

PHYS-200	Physique III				
	Kapon Elyahou				
Cursus		Sem.	Type	Langue	français
Physique		BA3	Obl.	d'enseignement	ITATIÇAIS
				Crédits	6
				Session	Hiver
				Semestre	Automne
				Examen	Ecrit
				Charge	180h
				Semaines	14
				Heures	6 hebdo
				Cours	4 hebdo
				Exercices	2 hebdo
				Nombre de	
				places	

Résumé

Approche phénoménologique, élaboration de modèles, résolution de problèmes et applications de la matière traitée dans différents chapitres de physique générale: Propriétés élastiques des solides et des fluides, Physique des fluides, Electromagnétisme (1ère partie).

Contenu

Propriétés élastiques des solides et des fluides

Etats de la matière, modèle continu; comportement élastique; comportement visqueux; efforts internes, flexion et torsion, instabilité élastique, tenseur des contraintes, équilibre d'un corps; tenseur des déformations; énergie de déformation élastique; solides hookéen, loi de Hooke généralisée; fluide newtonien: relation contrainte-vitesse de déformation.

Physique des fluides

Cinématique des fluides; équation de continuité; dynamique des fluides parfaits; statique des fluides; dynamique des fluides visqueux incompressibles; stabilité d'un écoulement, nombre de Reynolds et similitude; physique des surfaces, tension superficielle et capillarité.

Electromagnétisme (1ère partie)

Electrostatique, champ et potentiel électriques; courants électriques stationnaires; magnétostatique; champs électrique et magnétique dans la matière, polarisation et aimantation.

Compétences requises

Cours prérequis obligatoires

Physique I et II

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Concevoir un modèle d'un phénomène physique
- Formuler des hypothèses simplificatrices d'un modèle d'un phénomène physique
- Résoudre les mathématiques nécessaires à l'élaboration d'un modèle d'un phénomène physique
- Critiquer les résultats d'un modèle d'un phénomène physique
- Appliquer les modèles physiques développés à la résolution de problèmes et d'applications

Méthode d'enseignement

Ex cathedra et exercices en classe

Physique III Page 1 / 2

Méthode d'évaluation

Deux tests écrits facultatifs durant le semestre Bonus (b) de 0.5 par test réussi Examen écrit durant la session d'hiver: note (e) de 1 à 6 Note finale = e + b(1-e/6)

Encadrement

Office hours Oui
Assistants Oui
Forum électronique Non
Autres Non

Ressources

Bibliographie

Polycopiés et liste d'ouvrages recommandés

Sur moodle: transparents montrés au cours, énoncés et solutions des exercices

Polycopiés

- Propriétés élastiques des solides et des fluides, J.-J. Meister, édition automne 2014
- Physique des fluides, J.-J. Meister, édition automne 2014
- Electromagnétisme, J.-J. Meister, édition automne 2014

Sites web

• http://lcb.epfl.ch/polycops (Supplementary exercices and their solutions)

Liens Moodle

• http://moodle.epfl.ch/course/view.php?id=517

Préparation pour

Physique IV

Physique III Page 2 / 2