

MATH-233 **Probabilités et statistique**

Hongler Clément

Cursus	Sem.	Type
Physique	BA3	Obl.

Langue français d'enseignement Crédits Hiver Session Automne Semestre Examen **Ecrit** 120h Charge Semaines 14 4 hebdo Heures Cours 2 hebdo 2 hebdo Exercices Nombre de places

Résumé

Le cours donne une initiation à la théorie des probabilités et aux méthodes statistiques pour physiciens.

Contenu

Probabilités : Révision des notions de base, les probabilités conditionnelles.

Variables aléatoires: Définition, fonction de densité, fonction de répartition, espérance, médian, variance, covariance, corrélation, transformations, sommes, fonctions génératrices, fonctions caractéristiques, lois conditionnelles.

Lois discrètes et continues : Bernoulli, binomiale, hypergéométrique, Poisson, géométrique, normale, exponentielle, Gamma, Dirichlet, Cauchy, Weibull, Gumbel, chi-carré, *F*, *t*.

Théorèmes limites : loi des grands nombres, théorème central limite, lois stables

Marches aléatoires : récurrence, transience, limites d'échelles

Chaînes de Markov : classes de récurrence, mesures invariantes, ergodicité

Modèles physique : percolation, modèle d'Ising, matrices aléatoires, urne de Polya, probabilités en mécanique

quantique

Simulations : simuler une variable aléatoire, une chaîne de Markov **Introduction aux statistiques** : points de vue fréquentiste, bayésien

Estimation : estimation ponctuelle, biais, carré moyen de l'erreur, estimateurs

Tests d'hypothèses : erreurs, puissance, signification, chi^2

Régression linéaire

Compétences requises

Cours prérequis obligatoires

aucun

Cours prérequis indicatifs

Notions de calcul différentiel et intégral

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Exposer le contenu du cours.
- Etablir une stratégie pour résoudre un problème de probabilités /statistique
- Utiliser les règles liées à la manipulation de variables aléatoires
- Interpréter les théories exposées dans le cours.
- Proposer un modèle pour expliquer un phénomène

Probabilités et statistique Page 1 / 2

- Proposer un estimateur approprié pour une analyse de données.
- Appliquer les règles du calcul de probabilités.
- Appliquer les idées de statistiques à des données

Compétences transversales

- Dialoguer avec des professionnels d'autres disciplines.
- Evaluer sa propre performance dans le groupe, recevoir du feedback et y répondre de manière appropriée.
- Auto-évaluer son niveau de compétence acquise et planifier ses prochains objectifs d'apprentissage.
- Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.

Méthode d'enseignement

Cours ex cathedra, exercices en classe

Travail attendu

Faire les séries d'exercices. Se préparer au cours. Participer activement au cours.

Méthode d'évaluation

Ecrit

Ressources

Bibliographie

Théorie des probabilités de Charles-Edouard Pfister, Presses polytechniques et universitaires romandes. Introduction à la statistique de Stephan Morgenthaler, Presses polytechniques et universitaires romandes. Ce livre est d'un niveau mathématique plus bas et se concentre sur la statistique.

Ressources en bibliothèque

- Théorie des probabilités / Pfister
- Introduction à la statistique / Morgenthaler

Préparation pour

Statistique appliquée et cours professionnels utilisant la statistique

Probabilités et statistique Page 2 / 2