

PHYS-301	Biophysics I				
	Manley Suliana				
Cursus		Sem.	Type	Language of	English
Bioengineering		MA2, MA4	Opt.	teaching	Liigiion
Biomedical tech	nnologies minor	Е	Opt.	Credits	3
Physics		BA6	Opt.	Session Semester	Summer Spring
				Exam	Written
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly
				Number of	
				positions	

Summary

In this course we will study the cell (minimum unit of life) and its components. We will study several key cellular features: Membranes, genomes, channels and receptors. We will apply the laws of physics to develop models to make quantitative and predictive statements.

Content

Introduction to cell biophysics

Topics (lectures):

- 1. Biological membranes: Hydrophobic effect, 2D elasticity (2-4)
- 2. Molecular events: Ligand binding, ion channel function (5-7)
- 3. Transport in cellular systems: Diffusive, directed, crowded (8-11)
- 4. Genomes: 1D elasticity, regulation, transcription, synthetic biology (12-14)
- 1. Introduction of biological systems and concepts
- 2. Description of observations and measurements
- 3. Estimates of relevant numbers / development of quantitative models
- 4. Exposure to current research articles

Learning Prerequisites

Recommended courses

Mathematics and physics courses of the 1st and 2nd years

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate a model of a biophysical phenomena
- Develop hypotheses to simplify a model of a biophysical phenomena
- Solve the mathematics necessary to construct a model of a biophysical phenomena
- Critique the results of a model of a biophysical phenomena
- Apply models to solve problems and applications

Teaching methods

Ex cathedra and exercises in classrooms

Biophysics I Page 1 / 2

Assessment methods

Written exam at the end of the semester

Supervision

Others No

Resources

Bibliography

Lectures notes and list of recommended books Moodle: slides, exercises and their solutions

Notes/Handbook

- Biophysique Cellulaire, J.-J. Meister, édition automne 2013

Biophysics I Page 2 / 2