EE-586 Introduction to planetary sciences

CursusSem.TypeSpace technologies minorHOpt.Credits2SessionWinterSemesterFallExamWrittenWorkload60hWeeks14Hours2 weeklyCourses2 weeklySomester of positions2 weekly	Ivanov Anton				
Space technologies minor H Opt. Language of teaching English Space technologies minor H Opt. Credits 2 Credits Session Winter Semester Fall Exam Written Workload 60h Weeks 14 Hours 2 weekly Courses 2 weekly Sourses 2 weekly	Cursus	Sem.	Туре	Language of	English
	Space technologies minor	Η	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours Courses Number of positions	2 Winter Fall Written 60h 14 2 weekly 2 weekly

Summary

This course will contain an overview of planets, comets and asteroids. We will also present materials and results obtained by robotic spacecraft and how this data changed our understanding of the Solar System. Students will have hands on exercise with the data. We will discuss current missions.

Content

Introduction.

This course introduces students into exciting world of planetary science. Students will learn about history of planetary exploration, study planetary processes and obtain some practical skills in data processing and analysis. Course will discuss latest discoveries in the field.

History

Exploration of the Solar system began in 1957 with the launch of the first satellite. Since then, almost all planets have been imaged or visited by fly-by missions, orbiters or landers. Course will present the most important findings by the mission.

Planetary processes

Planetary science reviews all components of a planet: internal structure, surface processes and atmospheres. We will discuss internal structures of terrestrial planets and gaseous giants. Surface properties will include discussion of tectonics, volcanic eruptions and planetary ices. We will also discuss comets and asteroids. Students will benefit from an overview of many disciplines. Particular attention will be given to engineering aspects that are derived from our knowledge of the planets.

Practice

Practical exercises will include review of papers, problem solving and data processing and analysis.

Keywords

planets, Solar System, universe, life, exoplanets, comets, asteroids, spacecraft, robotic exploration, history, planetary processes

Learning Outcomes

By the end of the course, the student must be able to:

- Present how life has evolved on our Solar System
- Discuss hyptothesis of the formation of the planets
- Interpret results of the recent robotic missions in the Solary system
- Specify requirements for operations of a robotic mission to a planet or an asteroid
- Characterize major processes responsible for formation of planets

Transversal skills

- Collect data.
- Summarize an article or a technical report.
- Use both general and domain specific IT resources and tools
- Use a work methodology appropriate to the task.

Teaching methods

Lectures Homework Practical exercises

Expected student activities

Attendance on lectures Solving practical exercises Final exam

Assessment methods

Homework Assessment of practical work Final exam

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Bibliography William K. Hartmann, Moons and Planets, ISBN-13: 978-0534493936

Ressources en bibliothèque

• Moons and Planets / Hartmann

Notes/Handbook Notes are given in class and published on moodle.

Moodle Link

http://moodle.epfl.ch/course/view.php?id=6281