

AR-483 Interactive conceptual design of structural forms

Cursus	Sem.	Type
Architecture	MA1, MA3	Opt.

Fivet Corentin

Language of English teaching Credits Winter Session Fall Semester Exam Oral Workload 90h Weeks 12 3 weekly Hours 2 weekly Courses Exercises 1 weekly Number of positions

Summary

The class exposes students to the geometric design of unconventional low-carbon architectural structures. The focus is placed on the conceptual exploration of a rich, diverse solution set. Hand-controlled methods and computational tools are used, as well as strategies to rapidly take key decisions.

Content

- Introduction to the value of structural geometry towards the architectural project;
- Introduction to the role of design-oriented assumptions in engineering;
- Strategies for selecting and transforming load-bearing systems;
- Principles of structural design-oriented physical models;
- Formal explorations using graphic statics and force paths;
- Introduction to form-finding tools;
- Historical illustrations of interactive structural design exploration.

Keywords

- Architectural structures
- Interactive conceptual design
- Force shaping
- Ressource-efficiency
- Integration in the design project

Learning Prerequisites

Required courses

EPFL bachelor classes on structures or equivalent.

Learning Outcomes

By the end of the course, the student must be able to:

- · Choose a structural system that is relevant to given architectural, technical and environmental contexts
- Sketch a wide variety of structural forms that originally address specific issues

- Infer the geometric degrees of freedom in a given structural typology
- · Use a computational tool for graphical parameterization
- Identify structural solutions that require less material for construction
- Modify a structural solution to enhance its mechanical behavior

Transversal skills

- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Set objectives and design an action plan to reach those objectives.

Teaching methods

- · Lectures on board or slides
- · Discussions based on readings
- Theoretical and hands-on exercises, in class and homework assignments

Expected student activities

Regular work throughout the full semester and interaction in the class room.

Assessment methods

The class is punctuated by four mini design projects: (1) selection and transformation of structural typologies and geometries; (2) exploration through physical models; (3) hand-driven generation through graphic statics; and (4) computational generation through graphic statics. Each of the four mini design projects is worth 20% of the final grade. The final oral exam is worth the remaining 20%.

Supervision

Office hours Yes
Assistants Yes
Forum No

Resources

Bibliography

Form and Forces / Allen & Zalewski

Ressources en bibliothèque

• Form and forces / Allen & Zalewski

Notes/Handbook

Slides and readings will be published on Moodle.

Websites

• http://sxl.epfl.ch/teaching

Prerequisite for

Projet de master

