

Thibaud Emeric				
us	Sem.	Туре	Language of	English
math	MA1, MA3	Opt.	teaching	Linglish
nematics for teaching	MA1, MA3	Opt.	Credits	5
Mathématicien	MA1, MA3	Opt.	Session Semester	Winter Fall
			Exam	Written 150h
				Workload

Weeks

Hours

Number of positions

Courses Exercises

Summary

An introduction to statistical methods for supervised and unsupervised learning.

Content

• Introduction: supervised and unsupervised learning, motivating exemples, train and test errors, bias-variance tradeoff, model complexity and overfitting, k-nearest neighbors;

- Regression: linear regression, model selection, Ridge and Lasso methods, non-linear models;
- Classification: linear discriminant analysis, logistic regression;
- Resampling methods: cross-validation, bootstrap;
- Tree-based methods: classification and regression trees, bagging, random forests;
- Boosting;
- Support vector machines: definition, kernel trick;
- Unsupervised learning: principal component analysis, k-means, Gaussian mixtures and the EM algorithm;
- Other topics as time permits.

Learning Prerequisites

Recommended courses

Analysis, Linear Algebra, Probability, Statistics, Linear Models

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate
- the choice of a model/technique to analyze empirical data
- empirical data using supervised and unsupervised learning methods
- Formulate appropriate models for empirical data
- · Estimate the parameters of a statistical model
- Interpret the fit of a model to data

Teaching methods

Ex cathedra lectures, exercises and computer practicals in the classroom and at home.

14

4 weekly 2 weekly

2 weekly

Assessment methods

Continuous control, final exam.

Second session: from the rulebook of the Section of Mathematics (art. 3 al. 5), the teacher decides of the form of the exam and communicates it to the concerned students.

Supervision

Assistants

Resources

Virtual desktop infrastructure (VDI) No

Yes

Bibliography

• James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Statistical Learning, with Applications in R. Springer.

• Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second edition. Springer.

• Bishop, C. M. (2006) Pattern Recognition and Machine Learning. Springer.

• Shalev-Shwartz, S. and Ben-David, S. (2014) Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.

Ressources en bibliothèque

- Pattern Recognition and Machine Learning
- (electronic version)
- Understanding machine learning
- (version électronique)
- Introduction to Statistical Learning, with Applications
- (electronic version)
- Elements of Statistical Learning