Principles of semiconductor devices

Matioli Elison				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 3 Winter Fall Written 90h 14 3 weekly 2 weekly 1 weekly

Summary

EE-557

This course aims to give a solid introduction to semiconductors, from Silicon to compound semiconductors, making the connection between the physics and their application in real life. We will also explore several experimental techniques related to current semiconductor research and development.

Content

- 1. Introduction to Semiconductor Physics
- 2. Carrier Generation and Recombination
- 3. Charge Transport
 - Lab session
 - Hall measurements
- 4. Non-uniformly doped semiconductors
 - Schokley equations.
- 5. p-n junctions
- 6. Metal semiconductor junctions
- Schottky and Ohmic junctions
- 7. Metal Oxide Semiconductor MOSFETs
- 8. Semiconductor junctions (Compound semiconductors)
 - Band structure simulations
 - HEMTs
 - LEDs
 - Solar cells

Keywords

Semiconductors, compound, Silicon, LEDs, solar cells, HEMTs

Teaching methods

Lectures Lab sessions Simulation sessions

Assessment methods

Supervision

Office hours	Yes
Assistants	Yes

Resources

Bibliography

Del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. S. M. Sze, Physics of Semiconductor Devices

Ressources en bibliothèque

- Physics of Semiconductor Devices / Sze
- Integrated Microelectronic Devices / Del Alamo

Notes/Handbook

Class notes and slides will be posted on moodle after each class.

Moodle Link

https://moodle.epfl.ch/course/view.php?id=15349