

MATH-413 Statistics for data science

Panaretos Victor

Cursus	Sem.	Type
Computational science and Engineering	MA1, MA3	Opt.
Data Science	MA1	Obl.
Managmt, tech et entr.	MA1, MA3	Opt.

Language of teaching	English
Credits	6
Session	Winter
Semester	Fall
Exam	Written
Workload	180h
Weeks	14
Hours	6 weekly
Courses	4 weekly
Exercises	2 weekly
Number of positions	

Summary

Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops the key notions and methods of statistics, with an emphasis on concepts rather than techniques.

Content

Keywords

Data science, inference, likelihood, regression, regularisation, statistics.

Learning Prerequisites

Required courses

Real analysis, linear algebra, probability.

Recommended courses

A first course in statistics.

Important concepts to start the course

Students taking the course will need a solid grasp of notions from analysis (limits, sequences, series, continuity, differential/integral calculus) and linear algebra (linear subspaces, bases, dimension, eigendecompositions, etc). Though the course will cover a rapid review of probability, a first encounter with the subject is necessary (random variables, distributions/densities, independence, conditional probability). Familiarity with introductory level notions of statistics would be highly beneficial but not necessary.

Learning Outcomes

By the end of the course, the student must be able to:

- Derive properties of fundamental statistical procedures
- Estimate model parameters from empirical observations
- Test hypotheses related to the structural characteristics of a model
- Construct confidence bounds for model parameters and predictions
- · Contrast competing models in terms of fit and parsimony

Assessment methods

Statistics for data science Page 1 / 2

Final exam.

Resources

Bibliography

Davison, A.C. (2003). Statistical Models, Cambridge.

Panaretos, V.M. (2016). Statistics for Mathematicians. Birkhäuser.

Wasserman, L. (2004). All of Statistics. Springer.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Elements of Statistical Learning. Springer

Statistics for data science Page 2 / 2