00.00	Artificial field an field of K5				
	Gerstner Wulfram				
Cursus		Sem.	Туре	Language of teaching	English
Biocomputing minor		E	Opt.		English
Computer science		MA2	Opt.	Credits	4 Summer Spring Written
Data Science		MA2	Opt.	Semester	
SC master EPFL		MA2, MA4	Opt.	Exam	
				Workload	120h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly

CS-456 Artificial neural networks

Summary

Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into the main models of deep artificial neural networks: Supervised Learning and Reinforcement Learning.

Content

- Simple perceptrons for classification
- BackProp and Multilayer Perceptron
- Deep Learning 1: Introduction
- Deep Learning 2: regularization and Tricks of the Trade
- Deep Learning 3: Theory
- Autoencoders and unsupervised learning
- Reinforcement Learning 1: TD Learning
- Reinforcement Learning 2: Q learning, SARSA
- · Reinforcement Learning 3: Policy gradient
- Deep reinforcement learning
- Applications
- Outlook: Can the Brain implement Deep Learning?

Keywords

Deep learning, artificial neural networks, reinforcement learning, TD learning, SARSA,

Learning Prerequisites

Required courses

CS 433 Pattern Classification and Machine Learning (or equivalent) Calculus, Linear Algebra (at the level equivalent to first 2 years of EPFL in STI or IC, such as Computer Science, Physics or Electrical Engineering)

Recommended courses stochastic processes optimization

Important concepts to start the course

Number of positions

- Regularization in machine learning,
- Training base versus Test base, cross validation.
- Gradient descent. Stochastic gradient descent.
- Expectation, Poisson Process, Bernoulli Process.

Learning Outcomes

By the end of the course, the student must be able to:

- Apply learning in deep networks to real data
- Assess / Evaluate performance of learning algorithms
- Elaborate relations between different mathematical concepts of learning
- Judge limitations of algorithms
- Propose algorithms and models for learning in deep networks

Transversal skills

- Continue to work through difficulties or initial failure to find optimal solutions.
- Manage priorities.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.

Teaching methods

ex cathedra lectures and miniproject

Expected student activities

work on miniproject attend all lectures read book chapters and relevant tutorials solve all exercises

Assessment methods

written exam (70 percent) and miniproject (3 percent)

Resources

Bibliography

- Textbook: Deep Learning by Goodfellow, Bengio, Courville
- Landmark papers

Links to videos of presentations given by people in deep learning

Ressources en bibliothèque

• Deep Learning / Goodfellow