MATH-115(b) Advanced linear algebra II

yna			
Sem.	Туре	Language of	English
BA2	Obl.	Language of teaching Coefficient Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly
	Sem. BA2	Sem. Type BA2 Obl.	Sem. Type BA2 Obl. Language of teaching Coefficient Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions

Summary

The purpose of this course is to introduce the basic notions of linear algebra and to prove rigorously the main results of the subject.

Content

- Inner products: orthonormal bases, othogonal projections, orthogonal and unitary matrices, spectral theorem.

- Forms: linear forms, dual space, bilinear forms, sesquilinear forms, symmetric and hermitian matrices, Sylvester's theorem, singular values.

- Systemes of linear differential equations.

Keywords

inner product, bilinearity, orthogonality

Learning Prerequisites

Required courses Linear algebra I

Learning Outcomes

By the end of the course, the student must be able to:

- Give an example to illustrate the basic concepts of the course
- all concepts from the course
- Reconstruct elementary proofs
- Apply techniques from the course to various problems
- Compute eigenvectors/values, orthgonale bases, etc.
- Formulate accurate proofs and arguments
- Synthesize major results of the course to give a `big picture' of the material and its potential application

Transversal skills

- Use a work methodology appropriate to the task.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.

• Access and evaluate appropriate sources of information.

Teaching methods

Ex cathedra course, exercises in classroom

Expected student activities

Understanding the course notes, solving the exercices

Assessment methods

Written exam

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

- R. Cairoli, Algèbre linéaire, PressesPolytechniques Universitaires Romandes, 2e édition 1999.
- K. Hoffman, R. Kunze, *Linear Algebra*, Prentice-Hall, second edition, 1971.

- R. Dalang, A. Chabouni, *Algèbre linéaire*, PressesPolytechniques Universitaires Romandes, 2e édition, 2004.

Ressources en bibliothèque

- Algèbre linéaire / Dalang
- Linear Algebra / Hoffman
- Algèbre linéaire / Cairoli