

EE-550 Image and video processing

_				
Ebrahimi Touradj				
Cursus	Sem.	Type	Language of	English
Computer science	MA1, MA3	Opt.	teaching	Liigiioii
Cybersecurity	MA1	Opt.	Credits Session Semester Exam	6 Winter Fall Oral
Digital Humanities	MA1, MA3	Opt.		
Electrical and Electronical Engineering	MA1, MA3	Opt.		
SC master EPFL	MA1, MA3	Opt.	Workload Weeks	180h 14
			Hours Courses Project Number of positions	6 weekly 4 weekly 2 weekly

Summary

This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is composed of lectures, laboratory sessions, and mini-projects.

Content

Introduction, acquisition, restitution

Two-dimensionnal signals and systems, Elementary signals, Properties of two-dimentional Fourier transform, Discretization (spatial and spatio-temporal artefacts), Two-dimensional digital filters, Two-dimensional z-transform, Transfer function. Captors, monitors, printers, half-toning, color spaces.

Multi-dimensional filtres

Design of Infinite Impulse Response and Finite Impulse Response filters, Implementation of multi-dimensional filters, Directional decomposition and directional filters, M-D Sub-band filters, M-D Wavelets.

Visual perception

Neural system, Eye, Retina, Visual cortex, Model of visual system, Special effects, Mach phenomena and lateral inhibition, Color, Temporal vision.

Contour and feature extraction, segmentation

Local methods, Region based methods, Global methods, Canny, Mathematical morphology. Segmentation, Motion estimation

Visual information coding

Overview of the information theory and basics of rate-distortion, Conventional techniques: predictive coding, transform coding, subband coding, vector quantization, Advanced methods: multiresolution coding, perception based coding, region based coding, directional coding, fractals, Video coding: motion compensation, digital TV, High definition TV. Standards: JPEG, MPEG, H.261, H.263

Keywords

Contour detection, motion estimation, segmentation, human visual system, image compression, video compression

Learning Prerequisites

Required courses

Fundamental notions of signal processing

Recommended courses

Signal processing for communication

Important concepts to start the course

Sampling, quantization, transforms, programming, algorithms, systems

Learning Outcomes

By the end of the course, the student must be able to:

- · Create simple image processing systems
- · Create simple video processing systems
- · Compare image processing tools
- · Compare video processing tools
- Select appropriately optimal image and video processing tools

Transversal skills

- Make an oral presentation.
- Write a scientific or technical report.

Teaching methods

Ex cathedra, laboratory sessions, mini-projects

Expected student activities

Written report of laboratory sessions, oral presentation of mini-projects, comprehension of various notions presented during the course, resolve simple problems of image and video processing.

Assessment methods

Laboratories, mini-project, oral exam

Supervision

Others

Students are encouraged to ask for appoitment with the professor any time outside of teaching hours

Resources

Bibliography

handouts of image and video processing course Fundamentals of Digital Image Processing, A. K. Jain

Ressources en bibliothèque

• Fundamentals of Digital Image Processing / Jain

Prerequisite for

Semester projects, master thesis projects, doctoral thesis