

PHYS-445 **Nuclear fusion and plasma physics**

Fasoli Ambrogio				
Cursus	Sem.	Type	Language of	English
Auditeurs en ligne	Н	Obl.	teaching	Liigiisii
Ingphys	MA1, MA3	Opt.	Credits Session Semester	4
Nuclear engineering	MA1	Opt.		Winter Fall
Physicien	MA1, MA3	Opt.	Exam	Oral
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of	•

positions

Summary

The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.

Content

- 1) Basics of thermonuclear fusion
- 2) The plasma state and its collective effects
- 3) Charged particle motion and collisional effects
- 4) Fluid description of a plasma
- 5) Plasma equilibrium and stability
- 6) Magnetic confinement: Tokamak and Stellarator
- 7) Waves in plasma
- 8) Wave-particle interactions
- 9) Heating and non inductive current drive by radio frequency waves
- 10) Heating and non inductive current drive by neutral particle beams
- 11) Material science and technology: Low and high Temperature superconductor Properties of material under irradiation
- 12) Some nuclear aspects of a fusion reactor: Tritium production
- 13) Licensing a fusion reactor: safety, nuclear waste
- 14) Inertial confinement

Learning Prerequisites

Recommended courses

Basicknowledge of electricity and magnetism, and of simple concepts of fluids

Learning Outcomes

By the end of the course, the student must be able to:

- Design the main elements of a fusion reactor
- Identify the main physics challenges on the way to fusion
- Identify the main technological challenges of fusion

Teaching methods

Ex cathedra and in-class exercises

Assessment methods

oral examen (100%)

Resources

Ressources en bibliothèque

- Plasma Physics and Fusion Energy / Freidberg
- Introduction to Plasma Physics / Chen

Websites

• https://spcnet.epfl.ch/nuclfus/