Energy conversion and renewable energy

Maréchal François, Moret Stefano

Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours Courses	LIIGIISII
Energy Management and Sustainability	MA1, MA3	Opt.		3 Winter Fall Written 90h 14 3 weekly 2 weekly
Energy minor	Н	Opt.		
Environmental Sciences and Engineering	MA1, MA3	Opt.		
Minor in Integrated Design, Architecture and Sustainability	н	Opt.		
Nuclear engineering	MA1	Opt.		
			Exercises Number of	1 weekly

Summary

ME-409

The goal of the lecture is to present the principles of the energy conversion for conventional and renewable energy resources and to explain the most important parameters that define the energy conversion efficiency, resources implications and economics of the energy conversion technologies.

Content

Overview of energy stakes

Thermodynamic principles relevant for energy conversion systems, review of thermodynamic power cycles, heat pumps and refrigeration cycles, co-generation

Carbon capture and sequestration

Renewable energy vectors, their physical principles and essential equations: Solar (photovoltaics and thermal - collectors/concentrators), geothermal, biomass (a.o. gasification, biogases, liquid biofuels), hydro, wind

Fuel cells and hydrogen as energy vector

Storage of energy: Batteries, compressed air, pumped hydro, thermal storage Integrated urban systems

Keywords

Energy conversion, renewable energy

Learning Prerequisites

Required courses Physics I Physics II

Important concepts to start the course Conservation principles (energy, mass, momentum) Some basis in thermodynamics

Learning Outcomes

By the end of the course, the student must be able to:

- Quantify the efficiency and the main emission sources of energy conversion processes
- Explain the efficiency and the main emission sources of energy conversion processes
- Model energy conversion systems and industrial processes
- Draw the energy balances of an energy conversion system

positions

- Elaborate energy conversion scenarios
- Describe the principles and limitations of the main energy conversion technologies
- Compare energy conversion systems

Transversal skills

- Use a work methodology appropriate to the task.
- Demonstrate the capacity for critical thinking
- Write a scientific or technical report.
- Access and evaluate appropriate sources of information.

• Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.

Teaching methods

ex cathedra courses 2 hours per week and 1 hour of exercice with teaching assistant

Expected student activities

- active partiicpation to the lecture
- exercice for the exam presentation
- a mini project consisting in writing a 6 page report on an energy scenario for Switzerland

Assessment methods

Written exam (66%) and a project report (34%).

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Notes/Handbook Slides, videos and other documents are available on moodle

Websites

- http://moodle.epfl.ch
- http://www.energyscope.ch

Moodle Link

http://moodle.epfl.ch/course/view.php?id=15230

Videos

http://available on moodle