

CIVIL-530	Slope stability			
	Ferrari Alessio, Laloui Lyesse			
Cursus	Sem.	Туре		
Civil Engineering	MA2, MA	4 Opt.	t	

Language of teaching	English
Credits	3
Session	Summer
Semester	Spring
Exam	Written
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of	
positions	

Summary

Mechanics

Mineur STAS Russie

The course aims at providing future civil engineers with a comprehensive view on soil slope stability. It addresses landslide types and mass movement classification; slope failure mechanisms and methods for slope stability analysis are discussed; remedial measures and risk analysis are presented.

Е

Obl.

Opt.

Content

- Mass movement classification and landslide activity
- · Methods of slope stability analysis
- Limit equilibrium analysis
- Infinite slope analysis
- Methods for circular and non-circular slip surface
- Seismic slope stability
 - Methods for modelling soil mass movements
- Coupled and un-coupled numerical analyses
 - The role of pore water pressure
- Characterization of the pore water pressures in slopes
- Drained and undrained conditions
- Delayed failure
- Rapid drawdown
- Unsaturated conditions
 - Failure mechanisms and choice of geotechnical parameters
- Shear strength of soils in unsaturated conditions
- Progressive failure
 - Landslide instrumentation
- Measurement of displacements

- Location of the slip surface
- Measure of pore water pressures
 - Methods for slope stabilisation
- Slope geometry modification and loads
- Drainage systems
- Retaining structures
 - Basics of risk analysis and early warning systems
- **Learning Prerequisites**

Required courses Soil mechanics and groundwater seepage

Recommended courses Geomechanics

Learning Outcomes

By the end of the course, the student must be able to:

- Recognize type and occurrence of natural and man-made slope movements
- Assess / Evaluate the key geotechnical parameters that govern slope stability
- Use methods for slope stability assessment, modelling of slope movement and back-analysis of failed slopes
- Judge capabilities and limitations of slope stability analysis software
- Decide the fundamental steps for landslide investigations and select remedial measures
- Discuss risk analysis and early warning systems

Transversal skills

- Take responsibility for environmental impacts of her/ his actions and decisions.
- Use a work methodology appropriate to the task.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools
- Set objectives and design an action plan to reach those objectives.

Teaching methods

Ex cathedra, exercises, case study analysis

Assessment methods

Written