CS-251 Theory of computation

Svensson Ola Nils Anders

Cursus	Sem.	Туре	Language of teaching Credits Session Semester Exam	English 4 Summe Spring During semesi
Communication systems	BA4	Obl.		
Computer science minor	Е	Opt.		
Computer science	BA4	Obl.		
HES - IN	E	Obl.		

Language of	English
teaching	
Credits	4
Session	Summer
Semester	Spring
Exam	During the
	semester
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of	
positions	

Summary

This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematically precise understanding of their fundamental capabilities and limitations.

Content

- Basic models of computation (finite automata, Turing machine)
- Elements of computability theory (undecidability, reducibility)
- Introduction to time complexity theory (P, NP and theory of NP-completeness)

Keywords

theory of computation, Turing machines, P vs. NP problem, complexity theory, computability theory, finite automata, NP-completeness

Learning Prerequisites

Required courses CS-101 Advanced information, computation, communication I CS-250 Algorithms

Learning Outcomes

By the end of the course, the student must be able to:

- Perform a rigorous study of performance of an algorithm or a protocol
- · Classify computational difficulty of a decision problem
- Define the notion of NP-completeness
- Analyze various computation models
- Design a reduction between two computational problems
- Characterize different complexity classes
- Explain P vs. NP problem

Transversal skills

- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex cathedra with exercises

Assessment methods

Written exam and continuous control