

EE-472 Smart grids technologies

Cursus	Sem.	Type
Computer science	MA2	Obl.
Electrical and Electronical Engineering	MA2, MA4	Obl.
Energy Management and Sustainability	MA2, MA4	Obl.
Energy minor	E	Obl.

Le Boudec Jean-Yves. Paolone Mario

Language of teaching	English
Credits	5
Session	Summer
Semester	Spring
Exam	Written
Workload	150h
Weeks	14
Hours	5 weekly
Courses	2 weekly
Exercises	1 weekly
TP	2 weekly
Number of positions	

Summary

SC master EPFL

Learn the technologies and methodologies used in the context smart electrical grids and be able to deploy/implement/test them in a lab environment.

Content

1. Modern monitoring: phasor measurement units technology, synchrophasors extraction processes and time alignement

MA2, MA4 Obl.

- 2. Smart grid communication; reliability, real time and security issues
- 3. Topology assessment and contingency analysis of power grids
- 4. Admittance matrix calculus, numerical solution of the load flow problem and state estimation
- 5. Energy management and dispatch plans, the optimal power flow problem
- 6. Demand response

Keywords

Smart grid, power systems

Learning Prerequisites

Required courses

Electric power systems, power distribution networks, TPC/IP Networking

Recommended courses

Signal processing, discrete optimization methods, model predictive control, industrial electronics.

Important concepts to start the course

Understanding of electrical grids and communication networks.

Learning Outcomes

By the end of the course, the student must be able to:

- · Design monitoring and control platforms for smart grids
- Test a smart grid
- Implement a smart grid

Transversal skills

Smart grids technologies

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Demonstrate the capacity for critical thinking
- Manage priorities.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex cathedra, classroom integrated exercises and computer laboratory sessions.

Expected student activities

Attend lectures and labs
Do lab homeworks
Attend test sessions with clickers

Assessment methods

Tests during semester (20%), Written exam (30%) and graded lab reports (50%)

Supervision

Office hours No Forum Yes

Resources

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14163

Prerequisite for

Master projects in the areas of power systems and energy conversion systems.

Smart grids technologies Page 2 / 2