

2 weekly

2 weekly

Courses

Exercises Number of positions

MATH-461	Convexity				
Cursus		Sem.	Туре	Language of	English
Ingmath		MA1, MA3	Opt.	teaching	LIIGIISII
Mathematics for teaching		MA1, MA3	Opt.	Credits	5 Winter
Mathématicien		MA1, MA3	Opt.	Semester	Fall
				Exam	Written
				Weeks	14
				Hours	4 weekly

Remark

pas donné en 2019-20

Summary

Convexity is fundamental concept in mathematics. This course is an introduction to convexity and its ramifications in high-dimensional Geometry.

Content

- Convex sets, basic notions
- John's Theorem
- Lattices and Minkowski's Theorem
- Dual lattices and transferrence bounds
- The Brunn-Minkowski Inequality
- Measure concentration
- Metric embeddings
- The Johnson-Lindenstrauss Lemma

Keywords

- Convexity
- Polyhedron
- Lattice
- Geometry

Learning Prerequisites

Required courses Analyjsis 1+2 Linear Algebra 1+2

Recommended courses Discrete Optimization

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an appropriate method for solving a problem in convex geometry
- Prove theorems in convexity
- Design methods to solve problems

Transversal skills

- Demonstrate a capacity for creativity.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Continue to work through difficulties or initial failure to find optimal solutions.

Teaching methods

Ex cathedra lecture, exercises at home and in the classroom.

Expected student activities

Attendance of lectures and exercises Completion of exercises at home Study of literature

Assessment methods

Written exam during exam session

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

Jiri Matousek: Lectures on Discrete Geometry Alexander Barvinok: A Course in Convexity