

Number of positions

MATH-452

Numerical integration of dynamical systems

Cursus	Sem.	Туре	Language of	English
Computational science and Engineering	MA1, MA3	Opt.	teaching	Linglish
Ingmath	MA1, MA3	Opt.	Credits	5 Winter
Mathématicien	MA1, MA3	Opt.	Semester	Fall
			Exam	Written
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly

Remark

pas donné en 2018-19

Summary

In this course we will introduce and study numerical integrators for multi-scale (or stiff) differential equations and dynamical systems with special geometric structures (symplecticity, reversibility, first integrals, etc.). These numerical methods are important for many applications.

Content

- Numerical integration of multi-scale or stiff differential equations.

- Numerical methods preserving geometric structures of dynamical systems (Hamiltonian systems, reversible systems, systems with first integrals, etc.

Learning Prerequisites

Recommended courses Analysis, Numerical Analysis

Learning Outcomes

By the end of the course, the student must be able to:

- Identify stiff and Hamiltonian differential equations
- Analyze geometric and stability properties of differential equations
- Choose an appropriate method for the solution of stiff or Hamiltonian differential equations
- Analyze geometric and stability properties of numerical methods
- Implement numerical methods for solving stiff or Hamiltonian differential equations

Teaching methods

Ex cathedra lecture, exercises in classroom

Assessment methods Written

Supervision

Office hours

Numerical integration of dynamical systems

Yes

Assistants Yes

Resources

Bibliography

E. Hairer ans G. Wanner, "Solving Ordinary Differential Equations II", second revised edition, Springer, Berlin, 1996

E. Hairer, C Lubich and G. Wanner, "Geometric Numerical Integration", second edition, Springer, Berlin, 2006

Ressources en bibliothèque

• Geometric Numerical Integration / Hairer

• Solving Ordinary Differential Equations II / Hairer

Websites

http://anmc.epfl.ch/Numerical.html