

positions

MATH-449	Biostatistics					
	Morgenthaler Stephan					
Cursus		Sem.	Туре	Language of	English	
Ingmath		MA1, MA3	Opt.	teaching		
Mathematics for teaching		MA1, MA3	Opt.	Credits	5	
Mathématicien		MA1, MA3	Opt.	Session Semester	Winter Fall	
				Exam	Oral	
				Workload	150h	
				Weeks	14	
				Hours	4 weekly	
				Courses	2 weekly	
				Exercises	2 weekly	
				Number of		

Remark

Cours donnés en alternance tous les deux ans (donné en 2018-19)

Summary

Biostatistics is about the application of statistics to medicine and the life sciences. The course covers various methods and problems that are typical for these areas of application. Despite the applied context, the course treats the topic at a fairly abstract level.

Content

• The analysis of counting data: estimating probabilities, tests and confidence intervals, comparison of two probabilities, the chi-squared statistic and Fisher's exact test, binary regression, log-linear models, the test of Cochran-Mantel-Haenszel

- Meta-analysis: power of tests, combining evidence, inverse variance weights and meta-analysis, meta-analysis by variance stabilization, random effects v. fixed effects, publication bias
- Analysis of survival times: likelihood for censored data, non-parametric estimates of the survival function, regression models
- Random effects: Linear, mixed and generalized linear Models for longitudinal studies,
- Additional topics: crossover studies, multiple comparisons

Keywords

see content

Learning Prerequisites

Required courses

An introductory course covering the basics of statistical theory and probability theory.

Recommended courses Linear Models

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an appropriate method for a given problem
- Apply the methods learned in the course
- Defend a data analysis he/she performed
- Critique published studies

Transversal skills

- Demonstrate the capacity for critical thinking
- Access and evaluate appropriate sources of information.
- Communicate effectively with professionals from other disciplines.

Teaching methods

Classroom lectures supported by the blackboard, occasional examples shown on the beamer, exercices in class and independent work.

Expected student activities

Participation in exercice sessions.

Assessment methods

Oral examination

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Virtual desktop infrastructure (VDI) No

Bibliography A bibliography will be available on the moodle page of the course

Moodle Link

http://moodle.epfl.ch/course/view.php?id=14307