MATH-457 Numerical approximation of PDE's II

Cursus Sem. Type
Computational science and Engineering MA1, MA3 Opt.
Ingmath MA1, MA3 Opt.
Mathematics for teaching MA1, MA3 Opt.
Mathématicien MA1, MA3 Opt.

Summary

A priori and a posteriori error estimates of numerical methods for elliptic, parabolic and hyperbolic pdes. Adaptive algorithms.

Content

• Elliptic pdes with finite elements:

- Diffusion problems: a posteriori error estimates in the natural H1 norm, in the L2 norm, goal oriented, adaptive algorithms.

- Extensions to Stokes problem, optimal control and nonlinear problems.
- Parabolic pdes:
- The heat equation: functional setting, space and time discretization, a posteriori error estimates, adaptive algorithms.
- Extension to nonlinear problems.
- Hyperbolic pdes: space discretization, a posteriori error estimates for the transport equation and the wave equation.

Learning Prerequisites

Recommended courses

Analysis I and II, Numerical analysis, Introduction to the finite elements methods, Numerical approximation of partial differential equations I

Learning Outcomes

By the end of the course, the student must be able to:

- Expound the methods presented during the course and exercices
- Implement these methods in specific examples

Teaching methods

Ex cathedra lecture and exercises in the classroom

Assessment methods

2 weekly

2 weekly

Courses Exercises

Number of positions

Oral exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.