MATH-450 Numerical integration of stochastic differential equations

EPFL

2 weekly

Exercises Number of positions

Blumenthal Adrian				
Cursus	Sem.	Туре	Language of	English
Computational science and Engineering	MA2, MA4	Opt.	teaching	Linglish
Financial engineering	MA2, MA4	Opt.	Credits	5
Ingmath	MA2, MA4	Opt.	Session Semester	Summer Spring
Mathematics for teaching	MA2, MA4	Opt.	Exam	Written 150h 14
Mathématicien	MA2	Opt.	Workload Weeks	
			Hours	4 weekly 2 weekly

Summary

In this course we will introduce and study numerical integrators for stochastic differential equations. These numerical methods are important for many applications.

Content

Introduction to stochastic processes Ito calculus and stochastic differential equations Numerical methods for stochastic differential equations (strong and weak convergence, stability, etc.) Stochastic simulations and multi-level Monte-Carlo methods

Learning Prerequisites

Recommended courses Numerical Analysis, Advanced probability

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze the convergence and the stability properties of stochastiques numerical methods
- Implement numerical methods for solving stochastic differential equations
- Identify and understand the mathematical modeling of stochastic processes
- Manipulate Ito calculus to be able to perfom computation with stochastic differential equations
- Choose an appropriate numerical method to solve stochastic differential equations

Teaching methods

Ex cathedra lecture, exercises in classroom

Assessment methods

Written examination (in case of failure the second exam will be an oral examination). Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Ressources en bibliothèque

- An Introduction to Stochastic Differential Equations / Evans
- Numerical Solution of Stochastic Differential Equations / Kloeden
- Stochastic Numerics for Mathematical Physics / Milstein

Notes/Handbook

L. Arnold, "Stochastic Differential Equations, Theory and applications", John Wiley & Sons, 1974 L.C. Evans, "An Introduction to Stochastic Differential Equations", AMS, 2013

P.E. Kloeden, E. Platen, "Numerical Solution of Stochastic Differential Equations", Springer, 1999. H-H. Kuo, "Introduction to Stochastic Integration", Springer, 2005.

G.N. Milstein, M.V. Tretyakov, "Stochastic Numerics for Mathematical Physics", Springer, 2004.

Websites

• http://anmc.epfl.ch