

Buonsanti Raffaella				
Cursus	Sem.	Туре	Language of	English
Ingchim.	MA2, MA4	Opt.	teaching	Linglish
			Credits	3
			Session	Summer
			Semester	Spring
			Exam	Oral
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			TP	1 weekly
			Number of positions	

Summary

This course aims at understanding classical and non-classical nucleation theory, at reviewing different techniques for the synthesis of nanomaterials (mainly nanoparticles and thin films) and at learning about some key applications of these nanomaterials in chemical engineering.

Learning Outcomes

By the end of the course, the student must be able to:

- Describe the differences between properties of bulk and properties of nanomaterials
- Discuss classical and non-classical nucleation theory
- Identify the most suitable synthesis technique to prepare the nanomaterial of choice
- Design a synthetic route based on the expected effect of the different parameters involved
- Elaborate the benefits of nanomaterials in energy applications and catalysis.

Assessment methods

Oral exam

