

Number of positions

BIOENG-442 Biomaterials

Ghezzi Diego, Lütolf Matthias

Cursus	Sem.	Туре	Longuaga of	English
Bioengineering	MA2, MA4	Opt.	Language of teaching	English
Biomedical technologies minor	E	Opt.	Credits Session	4 Summar
Ingchim.	MA2, MA4	Opt.	Semester	Summer Spring
Life Sciences Engineering	MA2	Opt.	Exam	Written
Neuroprosthetics minor	E	Opt.	Workload Weeks	120h 14
Robotics	MA2	Opt.	Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly

Summary

This course covers the fundamental concepts behind the design, function and application of state-of-the-art biomaterials, that is, materials that are designed based on a molecular understanding of their interactions with biological systems.

Content

Part I: Biological fundamentals

- · Cells, extracellular matrices and tissues
- · Proteins and protein adsorption, immunological aspects of biomaterials
- · Stem cells and tissue regeneration
- Angiogenesis

Part II: Biomaterials classes

- · Biomaterials for devices, structural and chemically degradable biomaterials
- · Micro- and nanoparticles
- Extracellular matrix-mimicking biomaterials
- Hydrogels as biomaterials
- · Self-assembly and supramolecular biomaterials
- Biomaterials for gene delivery and vaccination

Part III: Emerging design and applications of biomaterials

- Tailoring materials for stem cell biology
- Biomaterials for tissue engineering
- · Biomaterials for modulation of the immune system
- Biomaterials for neuroengineering
- Biomaterials in medical devices

Keywords

Cells, extracellular matrix, tissue, regeneration, angiogenesis, biodegradable materials, hydrogels, drug delivery, microand nano-particles, self-assembly, high-throughput screening, stem cell engineering, materials for immunemodulation

Learning Prerequisites

Recommended courses

Materials science for bioengineers (BIOENG-315) Biology I (BIO-103) Stem cell biology and technology (BIO-447)

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate key effectors and their functions driving protein- and cell-materials interactions
- Formulate the basics of inflammation induced by materials in the body
- Elaborate the basics of stem cell function and tissue regeneration, and how materials can influence regeneration
- Systematize the different general applications of biomaterials
- Contextualise specific examples of biomaterials on the basis of application and understands their selection criteria
- Judge the suitability of a material for a certain application based on structure-property relationships
- Formalize the key concepts in the molecular engineering of bioactivity and bioresponsiveness

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Make an oral presentation.
- Demonstrate a capacity for creativity.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Communicate effectively, being understood, including across different languages and cultures.
- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.

Teaching methods

- Ex cathedra
- Group case study

Expected student activities

- Reading key literature before each course as preparation
- Group case study

Assessment methods

- Group project: 30%
- Written exam: 70%

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Bibliography

Comprehensive Biomaterials, 1st edition, Paul Ducheyene et al., Elsevier (2011) Principles of Tissue Engineering, Editors Lanza, Langer & Vacanti, Elsevier (2007)

Ressources en bibliothèque

- Comprehensive Biomaterials / Ducheyne
- Principles of tissue engineering / Lanza

Notes/Handbook

Will be provided on moodle webpage before each lecture

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=681