

BIO-502	Lab immersion II				
	Profs divers *				
Cursus		Sem.	Type	Language of	English
Bioengineering	g	MA1, MA2, MA3, MA4	Opt.	teaching	Liigiioii
				Credits	8
Life Sciences Engineering		MA1, MA2	Opt.	Withdrawal Session	Unauthorized
Neuroprosthetics minor		Н	Opt.		Winter, Summer
Sciences du vi	ivant	MA1, MA2, MA3, MA4	Opt.	Semester	Fall
				Exam	During the semester
				Workload	240h
				Weeks	14
				Hours	8 weekly
				TP	8 weekly
				Number of positions	
			It is not allowed to withdra from this subject after th registration deadline.		

Summary

The student will engage in a laboratory-based project in the field of molecular medicine, neuroscience or bioengineering. Student projects will emphasize acquisition of practical skills in experimentation and data analysis.

Content

A typical project will involve "hands-on" wetlab experimentation and data analysis, although theoretical and computationally-oriented projects are also possible. The projects are available on the web sites of SV laboratories or discussed directly with a potential head of lab.

The students are confronted with the realization of a laboratory-based project integrating specific aspects of molecular medicine or neuroscience.

This project will allow them to apply, to concrete problems, skills of domain and transversal skills acquired during their studies

Learning Prerequisites

Required courses

Bachelor in Life Sciences and Technology

Learning Outcomes

By the end of the course, the student must be able to:

- · Manage an individual research project
- Develop expertise in a specific area of research
- Implement appropriate technologies to address the scientific or engineering problem being studied
- Conduct experiments appropriate the specific problem being studied
- Assess / Evaluate data obtained in wetlab and computational experiments
- Interpret data obtained in wetlab and computational experiments
- Optimize experimental protocols and data presentation
- Plan experiments to test hypotheses based on obtained results

Transversal skills

Lab immersion II Page 1 / 2

- Assess progress against the plan, and adapt the plan as appropriate.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use a work methodology appropriate to the task.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Keep appropriate documentation for group meetings.
- Demonstrate the capacity for critical thinking
- Write a scientific or technical report.
- · Collect data.

Expected student activities

Students will focus on hands-on experimentation, which may be wetlab-based or computer-based, depending on the project. Students will read and discuss assigned papers from the original

scientific literature. As part of the evaluation process, students may be required to submit a written report or to give an oral presentation that summarizes and interprets their results.

16h/semaine de présence en laboratoire pendant 14 semaines ou 5 semaines à 100% (42h/semaine). Peut être pris durant les vacances d'été ou au semestre d'automne

Assessment methods

Continuous control

The mode of evaluation must be clearly defined and agreed between the student and the project mentor in advance. Typically the mode of evaluation will include a written report and /or an oral presentation prepared and delivered by the student.

Lab immersion II Page 2 / 2