

Scientific project design in regenerative medicine and diagnostics

Cursus	Sem.	Type
Bioengineering	MA1, MA3	Opt.
Life Sciences Engineering	MA1	Opt.
Sciences du vivant	MA1, MA3	Opt.

Language of	English	
teaching		
Credits	5	
Withdrawal	Unauthorized	
Session	Winter	
Semester	Fall	
Exam	During the	
	semester	
Workload	150h	
Weeks	14	
Hours	5 weekly	
Courses	2 weekly	
Exercises	3 weekly	
Number of	52	
positions		
It is not allowed to withdraw		

from this subject after the registration deadline.

Remark

only one registration per student to a scientific thinking course. (pas donné en 2018-19)

Summary

In this course students will be exposed to the fields of regenerative medicine and molecular diagnostics with a specific focus on how scientific developments in these fields are translated to the market through the formation of start-up companies.

Content

Learning Outcomes

By the end of the course, the student must be able to:

• Develop a project in the field of regenerative medicine or diagnostics

Transversal skills

- Demonstrate a capacity for creativity.
- Demonstrate the capacity for critical thinking
- Make an oral presentation.
- Write a scientific or technical report.

Teaching methods

The course will consist of one introductory lecture to the fields of regenerative medicine and diagnostics, followed by several presentations by representatives from early-, mid-, and late-stage startup companies.

During the first half of the semester students will form teams and develop project ideas for a potential start-up company. During the second half of the semester each team is expected to prepare a scientific project description, a business plan, and a patent disclosure. At the end of the course, each team will "pitch" their start-up comapny in an oral presentation given to the rest of the class.

Assessment methods

Grades will be based on the quality of the written report and the oral presentation.