

MICRO-561 Biomicroscopy I

Altud	a Hatica				
Altug Hatice					
Cursus Bioengineering		Sem. MA1, MA3	Type	Language of teaching	English
			Opt.		
Biomedical technologies n	ninor	Н	Opt.	Credits	3
Computational Neurosciences minor		Н	H Opt. Session Semester	Winter Fall	
Electrical and Electronical Engineering		MA1, MA3	Opt.	Exam	During the
Life Sciences Engineering Microtechnics Photonics minor		MA1	Opt. Workload	semester 90h	
		•	Opt.	Hours	14 3 weekly 3 weekly
			Opt.		
Photonics			Obl.	Number of	
Sciences du vivant		MA1, MA3	Opt.	positions	

Summary

Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used biomicrocopy methods such as widefield and fluorescence.

Content

Geometrical and matrix (ABCD) optics, wave and Fourier optics, point-spread function (PSF), resolution and contrast, microscope elements (objectivs, eyepiece, filters, illuminations, detectors), fluorescence microscopy, and preparation of biological samples for microscopy.

Keywords

Optical microscopy, fluorescence, wide field microscopy.

Learning Prerequisites

Required courses

Analysis IV, Linear algebra, General physics III/IV.

Important concepts to start the course

Basic matrix calculations, Fourier transformation, electromagnetic waves, refraction and reflection.

Learning Outcomes

By the end of the course, the student must be able to:

- Sketch basic optical systems.
- · Sketch wide field and confocal microscopes.
- Estimate the resolution of imaging systems.
- Propose a suitable microscopy configuration for imaging a sample.
- Characterize the elements of a microscope.
- Sketch wide field and fluorescence microscopes.
- Characterize the basic elements of a microscope

Transversal skills

Biomicroscopy I Page 1 / 3

• Communicate effectively with professionals from other disciplines.

Teaching methods

Lecturing with exercises.

Expected student activities

Following the lecturing and solving the exercises regularly is necessary for mastering the course contents. The solutions of the exercises are distributed at the next lecture. The student is invited to find his/her own solutions and to discuss them with the assistants.

Assessment methods

Continuous evaluation with two intermediate exams: the mean grade will constitute the final grade.

Allowed support: Notes are allowed on 2 sheets of A4 papers (recto-verso on both). Handwritings and prints are both accepted.

Supervision

Office hours No
Assistants Yes
Forum Yes

Others Possible to take dates.

Resources

Bibliography

- Fundamentals of Light Microscopy and Electronic Imaging, 2nd Edition, by Murphy and Davidson. Wiley-Blackwell (2013).
- Fundamentals of Photonics, 2nd Edition, by Saleh and Teich. Wiley (2007).
- Geometrical and matrix optics: José-Philippe Pérez, Optique: fondements et applications (2004).
- Eugene Hecht, Optics (2002).
- Miles V. Klein and Thomas E. Furtak, Optics (1986).
- Wave optics: Max Born and Emil Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (1980).

Ressources en bibliothèque

- Optique : fondements et applications / Pérez
- Optics / Hecht
- Fundamentals of Photonics / Saleh
- Principles of optics: electromagnetic theory of propagation, interference and diffraction of light / Born
- Fundamentals of Light Microscopy and Electronic Imaging / Murphy
- Optics / Klein

Notes/Handbook

Script covering geometrical and matrix optics, Fourier optics, microscopy and fluorescence. Script chapters and course slides are published on Moodle.

Websites

- http://www.olympusmicro.com/
- http://zeiss-campus.magnet.fsu.edu/tutorials/index.html
- http://moodle.epfl.ch/enrol/index.php?id=1341

Moodle Link

Biomicroscopy I Page 2 / 3

• http://moodle.epfl.ch/enrol/index.php?id=1341

Prerequisite for

Biomicroscopy II

Biomicroscopy I Page 3 / 3