

Stem cell biology and technology

Lütolf Matthias, Radtke Freddy, Suter David

Cursus	Sem.	Type
Bioengineering	MA1, MA3	Opt.
Life Sciences Engineering	MA1	Opt.
Sciences du vivant	MA1, MA3	Opt.

Language of teaching	English
Credits	3
Session	Winter
Semester	Fall
Exam	Written
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of positions	

Summary

This course introduces the fundamentals of stem cell biology, with a particular focus on the role of stem cells during development, tissue homeostasis/regeneration and disease.

Content

Embryonic stem cells, adult stem cells including hemaotopoietic, skin, intestine, neuronal and cancer stem cells. Concepts of nuclear reprogramming, cloning, and molecular basis of self-renewal. Stem cells and therapy, emerging concept in stem cell bioengineering.

Learning Outcomes

By the end of the course, the student must be able to:

- Define key molecular and cellular principles of pluripotent stem cell biology (i.e. embryonic stem cells and induced pluripotent stem cells).
- Develop a molecular understanding of nuclear reprogramming and cloning.
- Compare between different types of stem cells, their function and characterization.
- Define key molecular and cellular principles of the biology of several adult stem cell types including hematopoietic, skin, intestine and neural stem cells as well as cancer stem cells.
- Develop a firm conceptual understanding of key stem cell fate choices including self-renewal and differentiation/commitment as well as stem cell plasticity.
- Develop a molecular understanding of extrinsic (niche) regulation of stem cell fate.
- List key components of stem cell niches and their role in regulating stem cell fate.
- · Recall selected bioengineering tools for use in stem cell biology as well as translational aspects of stem cell biology.

Transversal skills

- Demonstrate the capacity for critical thinking
- Access and evaluate appropriate sources of information.

Teaching methods

Lectures and exercices

Assessment methods

Written exam

Resources

Ressources en bibliothèque

•