

EE-514 Brain-computer interaction

Millán José del R.		
Cursus	Sem.	Туре
Bioengineering	MA2, MA4	Opt.
Biomedical technologies minor	Е	Opt.
Computational Neurosciences minor	Е	Opt.
Electrical and Electronical Engineering	MA2, MA4	Opt.
Life Sciences Engineering	MA2	Opt.
Neuroprosthetics minor	Е	Opt.
Robotics	MA2	Opt.
Sciences du vivant	MA2, MA4	Opt.

Language of teaching	English	
Credits	4	
Withdrawal	Unauthorized	
Session	Summer	
Semester	Spring	
Exam	Written	
Workload	120h	
Weeks	14	
Hours	4 weekly	
Courses	2 weekly	
Exercises	2 weekly	
Number of	48	
positions		
It is not allowed to with draw.		

It is not allowed to withdraw from this subject after the registration deadline.

Summary

How to provide a direct interaction between the human neural system and machines aiming to augment human capabilities, especially of disabled people. Description of the brain signals and the algorithms (signal processing & machine learning) for recognizing subjects' intents and cognitive states.

Content

- 1.Introduction
- 2. Basic Neurology + ML
- 3. Multiunit Recording
- 4. Electroencephalogram (EEG) & Inverse Methods
- 5. EEG-based BCI and Paradigms
- 6. Electrocorticogram (ECoG)
- 7. Beyond Motor-related Signals for BCI
- 8. Cognitive Signals for Brain Interaction
- 9. BCI Applications

Keywords

brain-computer interfaces, brain-machine interfaces, neuroprosthetics, pattern recognition, brain signal processing, human physiological signals, neuroscience, human-computer interaction

Learning Prerequisites

Required courses

Pattern recognition (for instance, Data Analysis and Model Classification) Signal Processing

Recommended courses

Neuroscience and Cognitive Neuroscience

Important concepts to start the course

Pattern recognition: feature selection, linear models for classification and regression (quick introduction at the beginning of the course)

Signal processing: Frequency domain analysis, filtering Matlab programming

Teaching methods

Lectures and project based on students' own experiments.

Expected student activities

Students will have to run their own experiments on a protocol of their choice. Then, they will analyze the recorded brain signals (EEG) and provide a written report.

Assessment methods

Written exam. Final grade: 50% Exam, 50% Exercises.

Resources

Bibliography

Dornhege, G. Millán, J.d.R., Hinterberger, T., McFarland, D.J., and Müller, K.-R. (eds.) (2007). Towards Brain-Computing Interfacing. Cambridge, MA: MIT Press.

Wolpaw, J. and Wolpaw E.W. (eds.) (2012). Brain-Computer Interfaces: Principles and Practice. Oxford University Press.

Ressources en bibliothèque

- Brain-computer interfaces : principles and practice / Wolpaw
- Towards BRain-Computing Interfacing / Millan

Moodle Link

• https://moodle.epfl.ch/course/view.php?id=8831