ME-344 Incompressible fluid mechanics

Schneider Tobias				
Cursus	Sem.	Туре	l anguage of	English
Mechanical engineering	BA5	Obl.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 4 Winter Fall Written 120h 14 4 weekly 3 weekly 1 weekly

Summary

Basic lecture in incompressible fluid mechanics

Content

Characteristic quantities of an incompressible flow, hydrostatic, viscous stress, dimensional analysis, Navier-Stoke equations, conservation of mass and momentum in integral and differential form, trajectories and streamlines, Bernoulli's equation, lift and drag of a solid body, theory of reduced scale models, inviscid flows, potential flows, unsteady flows, added mass, vorticity dynamics, introduction to boundary layer concept and of turbulence.

Keywords

Incompressible flows, Navier-Stokes equation, lift, drag

Learning Prerequisites

Recommended courses

- Mechanics of continuous media
- Fluid flow

Learning Outcomes

By the end of the course, the student must be able to:

- Explain and apply the concepts of mass, energy, and momentum balance, E1
- Define , describe and apply the basic flow equations, such as the Navier-Stokes equations, AH14
- Describe simplified governing equations, such as the Bernoulli or potential equations, their domain of validity and apply them in appropriate situations, AH15
- Describe flow in simple geometries, such as over a flat plate, in a tube, or around a sphere or airfoil, AH9
- Link flow behaviour with non dimensional pa rameters (e.g. Reynolds and Mach numbers) , AH2
- Identify similarity laws and their use for dimensioning an experimental testbed, AH23
- Solve analytically or numerically the potential flow around an airfoil, AH19
- Describe the physical differences between laminar and turbulent flows , AH4

Transversal skills

- Use a work methodology appropriate to the task.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Lectures and sessions of exercises

Assessment methods

Written exam

Resources Bibliography Munson, Okiishi, Juebsch & Rothmayer, Fluid Mechanics, 7th Edition, SI Version

Ressources en bibliothèque

• Fluid Mechanics / Munson