

1 weekly

It is not allowed to withdraw from this subject after the registration deadline.

Project Number of positions

ME-524	Advanced control systems				
	Karimi Alireza				
Cursus		Sem.	Туре	Language of	English
Energy Management and Sustainability		MA2, MA4	Opt.	teaching Credits Withdrawal Session	Linglish
Mechanical engineering Microtechnics		MA2, MA4 MA2, MA4	Opt. Opt.		3 Unauthorized Summer
Systems Engineering minor		E	Opt.	Exam	During the semester
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly

Summary

This course covers some theoretical and practical aspects of robust and adaptive control. Robust controller design with H-infinity performance, digital controller design with pole placement technique, direct, indirect and switching adaptive control are studied and implemented in a hands-on lab.

Content

Stability, performance and robustness of closed-loop control systems. Robust controller design by loop shaping. Robust H-infinity controller design in the frequency domain. Multivariable decoupling controller design. Gain-scheduled controller design.

Two-degree of freedom RST digital polynomial controller. Pole placement technique and its relation to Internal Model Control (IMC), Model Reference Control (MRC) and Minimum Variance Control (MVC). Robust pole placement with Q parameterization. Parameter adaptation algorithms. Direct and Indirect adaptive control. Switching adaptive control.

Keywords

Adaptive control, robust control, digital RST controller.

Learning Prerequisites

Required courses Control systems + Lab

Recommended courses

- 1. Control Systems
- 2. System Identification
- 3. Multivariable systems

Important concepts to start the course

- Analyze a linear dynamical system (both time and frequency responses)
- Represent a linear system by a transfer function
- · Identify a dynamic system using experimental data
- Design a PID controller

• Design a simple controller for a dynamic system

Learning Outcomes

By the end of the course, the student must be able to:

- Design an advanced controller for a dynamic system, A11
- Assess / Evaluate the stability, performance and robustness of a closed-loop system, A12
- Define (specifications) the adequate control performance for dynamic systems, A13
- Propose several control solutions, formulate the trade-offs, choose the options, A14
- Prove the performance (by simulations or experiments) of a mechatronic system, A21
- Assess / Evaluate and discuss the perform ance and the solutions, and draw conclusions.

Transversal skills

• Write a scientific or technical report.

Teaching methods

Ex cathedra course, integrated demos and case studies, Hands-on laboratory.

Expected student activities

Hands-on laboratory in groups of two students.

Assessment methods

Hands-on lab reports (30%) and written test (70%).

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

- 1. Feedback Control Theory by Doyle, Francis and Tannenbaum; Maxwell Macmillan, 1992.
- 2. Adaptive Control by Landau, Lozano, M'Saad and Karimi, Springer, 2011.

Ressources en bibliothèque

- Adaptive Control / Landau
- Feedback Control Theory / Doyle

Notes/Handbook Robust and Adaptive Control, Course-notes by Alireza Karimi

Websites

http://la.epfl.ch/Advanced_Control_Systems

EPFL