

CS-449 Systems for data science

Koch Christoph

Cursus	Sem.	Type
Computational science and Engineering	MA2, MA4	Opt.
Data Science	MA2, MA4	Obl.
Data science minor	E	Opt.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	During the semester
Workload	180h
Weeks	14
Hours	6 weekly
Courses	2 weekly
Exercises	2 weekly
Project	2 weekly
Number of positions	

Summary

The course covers fundamental principles for understanding and building systems for managing and analyzing large amounts of data.

Content

Programming methods, including parallel programming:

- Data-parallel programming: Collection abstractions and modern collection libraries.
- Data-flow parallelism vs. message passing. The bulk-synchronous parallel programming model.
- SQL and relational algebra. Expressing advanced problems as queries.

Big data systems design and implementation:

- Scalability. Synchrony. Distributed systems architectures.
- Data locality. Memory hierarchies. New hardware. Sequential versus random access to secondary storage. Partitioning and replication. Data layouts column stores.
- · Massively parallel processing operations joins and sorting
- Query optimization. Index selection. Physical database design. Database tuning.
- Challenges of big data machine learning systems.

Changing data:

- Introduction to transaction processing: purpose, anomalies serializability; concurrency
- Commits and consensus.
- Eventual consistency. The CAP theorem. NoSQL and NewSQL systems.

Online / Streaming / Real-time analytics:

- · Data stream processing. Windows. Load shedding.
- "Small data"/online aggregation: Sampling and approximating aggregates.
- Incremental and online query processing: incremental view maintenance and materialized views.

Systems for data science Page 1 / 3

Data warehousing: The data warehousing workflow, ETL. OLAP, Data Cubes

Keywords

Databases, data-parallel programming, NoSQL systems, query processing.

Learning Prerequisites

Required courses

CS-322: Introduction to database systems

Recommended courses

CS-323: Introduction to operating systems

CS-206 Parallelism and concurrency

Important concepts to start the course

- Algorithms and data structures sorting algorithms, balanced trees, graph traversals.
- The Scala programming language will be used throughout the course. Programming experience in this language is strongly recommended.
- Basic knowledge or computer networking and distributed systems

Learning Outcomes

By the end of the course, the student must be able to:

- Choose systems parameters, data layouts, query plans, and application designs for database systems and applications.
- Develop data-parallel analytics programs that make use of modern clusters and cloud offerings to scale up to very large workloads.
- Analyze the trade-offs between various approaches to large-scala data management and analytics, depending on efficiency, scalability, and latency needs
- Choose the most appropriate existing systems architecture and technology for a task

Teaching methods

Ex cathedra; including exercises in class, practice with pen and paper or with a computer, and a project

Expected student activities

During the semester, the students are expected to:

- attend the lectures in order to ask questions and interact with the professor,
- attend the exercises session to solve and discuss exercises,
- solve practical homeworks and/or finish a project during the semester,
- take a midterm
- take a final exam

Assessment methods

Systems for data science Page 2 / 3

Homeworks, written examinations, project. Continuous control

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Others Office ours by appointment

Resources

Bibliography

Relevant resources (textbook chapters, articles, and videos) posted on moodle page.

Systems for data science Page 3 / 3