

CH-401 Advanced NMR and imaging

Emsley Lyndon

Cursus	Sem.	Type
Chimiste	MA2, MA4	Opt.

Language of English teaching Credits Summer Session Semester Spring Exam Written Workload 90h Weeks 14 2 weekly Hours 2 weekly Courses Number of positions

Summary

Principles of Magnetic Resonance Imaging (MRI) and main applications to medical imaging. Principles of modern multi-dimensional NMR in liquids and solids and application to biomolecules and materials. Principles of Hyperpolarization.

Content

- Projections of objects using magnetic field gradients.
- Image reconstruction by back- projection and by Fourier transformation.
- · Contrast based on relaxation, diffusion, and contrast agents.
- · Functional imaging.
- · Imaging of flow and angiography.
- · Advanced multi-dimensional correlation methods in magnetic resonance. Applications to protein strucutre determination and to determination of metabolism.
- Principles of multiple-pulse solid-state NMR. Applications to materials science.
- Principles of Nuclear Hyperpolarization and applications to imaging and spectroscopy.

Learning Prerequisites

Required courses

Nuclear Magnetic Resonance (by L. Emsley)

Recommended courses

Basic physical, organic, inorganic and biological chemistry

Important concepts to start the course

Spectroscopy, data analysis, analytical chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the meaning and limitations of MRI pictures
- Assess / Evaluate an approach to structure determination of molecules by NMR
- Design an NMR based approach to characterising materials
- Hypothesize how to produce hyperpolarized nuclear spins

Teaching methods

Lectures based on popular textbooks with ample addition of illustrations through recent applications and case studies. Regular excercise classes.

Assessment methods

Written examination

Supervision

Assistants Yes

Resources

Bibliography

"NMR: the Toolkit", P.J. Hore, J.A. Jones and S.Wimperis, Oxford, 2003

"Understanding NMR Spectroscopy," 2nd Edition, J. Keeler, Wiley, 2010

Ressources en bibliothèque

- NMR: the Toolkit / Hore
- Spin dynamics / Levitt
- Understanding NMR spectroscopy / Keeler

Websites

• http://scgc.epfl.ch/telechargement_cours_chimie

[&]quot;Spin Dynamics," 2nd Edition, M.H. Levitt, Wiley, 2008