

#### EE-432 Hardware systems modeling I Vachoux Alain

| (             | NAA NAA |    |
|---------------|---------|----|
|               | Sem.    | Ту |
| Vacioux Alain |         |    |

| Cursus                                  | Sem.     | Type |
|-----------------------------------------|----------|------|
| Electrical and Electronical Engineering | MA1, MA3 | Opt. |
| Mineur STAS Chine                       | Н        | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 2        |
| Session              | Winter   |
| Semester             | Fall     |
| Exam                 | Written  |
| Workload             | 60h      |
| Weeks                | 14       |
| Hours                | 2 weekly |
| Courses              | 2 weekly |
| Number of positions  |          |

### Summary

Creation and use of models in digital hardware design from the RTL design with the VHDL language to the more abstract system level as required for designing modern systems-on-chip. The SystemVerilog and SystemC languages and the principles of functional verification will be introduced.

#### Content

#### Introduction

System-on-chip (SoC) design issues. Design methodologies and design tasks. Notion of model. Hardware description and verification languages at RTL and system level.

# Digital hardware modeling at RTL and system level

Review of essential modeling concepts in RTL design using VHDL. Discrete-event (DE) modeling. Untimed modeling (algorithmic, functional). Transaction-level modeling (TLM). Dataflow (DF) modeling. Modeling using SystemVerilog and SystemC.

### Functional verification of systems-on-chip

Fundamental elements of the functional verification for SoCs: challenges of the verification of complex SoCs, verification methodologies, definition and use of a verification plan, architecture and elements of a layered verification environment. Use of Open Source VHDL Verification Methodology (OSVVM) for building an efficient and scalable functional verification environment.

### **Keywords**

Hardware description and verification language, model of computation, functional verification, VHDL, SystemVerilog, SystemC.

### **Learning Prerequisites**

### Required courses

Logic systems (CS-171). Digital Systems Design (EE-334).

#### Recommended courses

Lab in digital systems design (EE-397).

### Important concepts to start the course

Combinational and sequential components in digital electronic systems. RTL design (control and datapath processing). Use of VHDL for synthesis.

### **Learning Outcomes**

By the end of the course, the student must be able to:



- Describe available modeling formalisms for digital hardware system design.
- Compare the proper use of available modeling formalisms.
- Use VHDL, SystemVerilog and SystemC for developing models at various levels of abstraction.
- Exploit proper modeling techniques.
- Develop reusable models.
- · Construct a basic functional verification environment.

### **Teaching methods**

Lectures with integrated exercises.

### **Expected student activities**

Attending lectures. Completing exercises. Using state-of-the-art electronic design automation (EDA) tools.

### **Assessment methods**

Homework exercises. Midterm project. Final examination including a quiz and problems.

### Supervision

Office hours No
Assistants Yes
Forum Yes

Others Individual feedback comments on delivered work in the Moodle page of the course.

### Resources

### **Bibliography**

A. Jantsch, *Modeling Embedded Systems and SOC's*, Morgan Kaufmann (Elsevier), 2004. P.P. Chu, *RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability*, Wiley-Interscience, 2006.

T. Grötker, et al., System Design with SystemC, Springer, 2002.

C. Spear, G. Tumbush, SystemVerilog for Verification - A Guide to Learning the Testbench Language Features, Springer, 3rd ed., 2012.

# Ressources en bibliothèque

- SystemVerilog for Verification / Spear
- Modeling Embedded Systems and SOC's / Jantsch
- RTL Hardware Design Using VHDL / Chu
- System Design with SystemC / Grötker

### Notes/Handbook

Course notes. VHDL/SystemVerilog/SystemC in a nutshell. EDA tool user's guide.

## Websites

- http://www.doulos.com/knowhow/vhdl\_designers\_guide
- http://www.doulos.com/knowhow/sysverilog
- http://www.doulos.com/knowhow/systemc

### Moodle Link

• http://moodle.epfl.ch/course/view.php?id=40

### Prerequisite for



Hardware systems modeling II (EE-433). VLSI design II (EE-431).