

Storni Bruno				
Cursus	Sem.	Туре	Language of	English
Space technologies minor	E	Opt.	teaching	-
			Credits Session	2 Summer
			Semester	Spring
			Exam	Written
			Workload	60h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly
			Number of positions	

Summary

The course presents and analyses the different systems, architectures and components of spacecraft avionics (on board data handling and processing systems) controlling and commanding spacecraft and payloads (instruments). It will study typical bus structures (standard) used for S/C avionics.

Content

Introduction

Classification of spacecraft functions depending of mission profile and identification of requirements and functions of on board data handling systems

Architecture

Typical spacecraft structure, system and major subsystem, redundancy management, data flow, telematics, service module, payloads

Space environment threads to electronics systems and mitigation tecnics

On board electronics susceptibility to space radiation environment, radiation hardness, radiation mitigation techniques, HW and SW error detection and correction

Components and subsystems

On board microprocessors and microcontrollers, on board communication buses and interfaces, mass memories, attitude and orbit control subsystems, payloads data processing, telemetry and telecommands

Standards and system modelisation

Modelisation of flight avioncs systems, spacecarft onboard interface services SOIS, Standard Space links protocols, standard data units, spacecraft synchronization time, buses and networks

www.ecss.nl

Cases studies

examples of flight avionics on International Space Station ISS, Automated Transfer Vehicle ATV, ExoMars (Rover, Lander and Orbiter)

Avionics on CAN

Exercices

Implement simple avioncs system components on an advanced design simulation and verification tool http://vector.com/

Keywords

avionics spacecraft telecommand/telemetry intelligent distributed systems spacecraft onboard interfaces services space enviroment spacecraft electronics, rad hard components on board processors and systems

ECSS communication standards

Learning Outcomes

By the end of the course, the student must be able to:

- Classify space mission on avionics requirements
- Analyze spacecraft avionics requirements
- Design flight avionics systems
- Model a distributed intelligent system on CAN base
- Order different on board communication bus systems
- Recognize threads and requirements for on board electronics components
- Implement a simulated avionics components on design tool
- · Assess / Evaluate flight avionics requirements

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Use a work methodology appropriate to the task.

Teaching methods

Lecture with exercices in Space Center lab

Expected student activities

exercice on CANoe implement some function of an flight avionics system , based on distributed intelligent system peer to peer communication system CAN.

Resources

Notes/Handbook Script handsout ECSS standards