CS-524	Computational complexity
--------	--------------------------

	Svensson Ola Nils Anders				
Cursus		Sem.	Туре	Language of	English
Computer science		MA1, MA3	Opt.	teaching	English
Cybersecurity		MA1	Opt.	Credits	4
Data Science		MA1, MA3	Opt.	Session Semester	Winter Fall
SC master EPFL		MA1, MA3	Opt.	Exam	During the
				Workload	semester 120h
				Weeks	14
				Hours	4 weekly
				Courses	3 weekly
				Exercises	1 weekly

Summary

In computational complexity we study the computational resources needed to solve problems and understand the relation between different types of computation. This course advances the students knowledge of computational complexity, and develop an understanding of fundamental open questions.

Content

- Complexity classes (time, space, nondeterminism)
- Boolean circuits and nonuniform computation
- Role of randomness in computation (extractors, pseudo-random generators)
- Interactive proofs and zero knowledge proofs
- Probabilistically checkable proofs and their characterization of the complexity class NP (PCP Theorem)
- Communication complexity

Keywords

theoretical computer science computational complexity

Learning Prerequisites

Recommended courses Theory of computation (CS-251) Algorithms (CS-250)

Learning Outcomes

By the end of the course, the student must be able to:

- Demonstrate an understanding of computational complexity and the P vs NP problem
- Formalize and analyze abstractions of complex scenarios/problems
- Express a good understanding of different concepts of proofs
- · Prove statements that are similar to those taught in the course
- Use and understand the role of randomness in computation

Number of positions

- Illustrate a basic understanding of probabilistically checkable proofs and their characterization of the class NP (the PCP-Theorem)
- Explain recent exciting developments in theoretical computer science
- Compare different models of computation

Transversal skills

- Demonstrate the capacity for critical thinking
- Summarize an article or a technical report.

Teaching methods

Lecturing and exercises

Expected student activities

Actively attending lectures and exercise sessions. Also homeworks and exam.

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes

Resources

Virtual desktop infrastructure (VDI) No

Bibliography

Sanjeev Arora and Boaz Barak: Computational Complexity: A Modern Approach, Cambridge University Press.

Ressources en bibliothèque

Computational Complexity: A Modern Approach / Arora

Websites

http://theory.epfl.ch/courses/complexity/