MICRO-301	Physics of manufacturing	
	Bellouard Yves	

Dollodala 140	0			
Cursus	Sem.	Туре	Language of	English
Microtechnics	BA6	Obl.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises TP Number of positions	English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 1 weekly 1 weekly

Summary

This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes, the relation between materials/manufacturing processes and design, as well as economical aspects.

Content

The lectures are organized as follows:

- 1. Introduction Material selection
- 2. Surfaces
- 3. Laser processing I
- 4. Laser processing II
- 5. Metal forming
- 6. Moulding Casting Replica
- 7. Conventional machining
- 8. Unconventional processes
- 9. Packaging, joining, finishing
- 10. Cost of manufacturing
- 11. Tolerances, quality control
- 12. Exercises

Keywords

Manufacturing, packaging, physics of manufacturing processes

Learning Outcomes

By the end of the course, the student must be able to:

- Formalize requirements for a manufacturing process considering a given design
- Analyze a given manufacturing process
- Optimize the choice of material for a manufacturing problem
- Analyze economical aspects for manufacturing

Assessment methods

• Written exam at the end of the course

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

- M. Ashby, Materials selection in Mechanical Design, 4th edition, Elsevier
- M.C. Shaw, P.K. Wright, S. Kalpakjian, Manufacturing Engineering & Technology, Pearson

Ressources en bibliothèque

- Materials selection in Mechanical Design, 4th ed
- Manufacturing Engineering & Technology / Kalpakjian