

Semiconductor devices I

Matioli Elison

Cursus	Sem.	Type
Electrical and Electronical Engineering	MA1, MA3	Obl.

Language of English teaching Credits Session Winter Semester Fall Exam Written Workload 120h Weeks 14 Hours 4 weekly Courses 2 weekly 2 weekly Exercises Number of positions

Summary

This course aims to give a solid introduction to semiconductors, from Silicon to compound semiconductors, making the connection between the physics and their application in real life. We will explore several experimental techniques related to current semiconductor research and development.

Content

- 1. Introduction to Semiconductor Physics
- 2. Carrier Generation and Recombination
 - link to LEDs and Solar cells
- 3. Charge Transport
 - Lab session
 - Hall measurements
- 4. Non-uniformly doped semiconductors
 - · Schokley equations.
- 5. p-n junctions
- 6. Metal semiconductor junctions
 - Schottky and Ohmic junctions
- 7. Metal Oxide Semiconductor MOSFETs
- 8. Semiconductor junctions (Compound semiconductors)
 - Band structure simulations
- 9. Semiconductor devices of today
 - High electron mobility transistors (HEMTs)
 - Power transistors

Keywords

Semiconductors, compound, Silicon, GaAs, GaN, transistors, LEDs, solar cells, HEMTs

Learning Prerequisites

Semiconductor devices I Page 1 / 2

Recommended courses

Physique général III et IV, Electronique I et II

Teaching methods

Lectures Assignments Lab sessions Simulations

Assessment methods

homeworks, mid-term and final exams

Supervision

Office hours Yes Assistants Yes

Resources

Ressources en bibliothèque

• Integrated microelectronic devices : physics and modeling /del Alamo

Notes/Handbook

Notes and slides will be published on moodle after each lecture

Semiconductor devices I Page 2 / 2