

Filliger Roger	, Gallay Olivier			
Cursus	Sem.	Туре	Language of	English
Microtechnics	MA2, MA4	Obl.	teaching	Linglish
			Credits	3
			Session	Summer
			Semester	Spring
			Exam	Oral
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly
			Number of	
			positions	

Summary

This course discusses quantitatively some important and generic performance and reliability issues that affect the behaviour of supply chains, and in particular manufacturing systems.

Content

Theoretical review: useful probability distributions and concepts of reliability theory, applied stochastic processes, relevant applied queuing systems, discrete-event simulation framework using AnyLogic.

Material flow analysis and reliability issues in manufacturing systems: machines prone to failure, random production flows in buffered transfer lines, decomposition of transfer lines, performance measures, associated discrete-event simulations.

Hedging point policies for manufacturing systems: dynamic programming principles for safety stock computation, optimality of hedging point policies, inventory management, associated discrete-event simulations. **Supply chain dynamics**: stability, bullwhip effect, customer demand satisfaction.

Keywords

Stochastic manufacturing systems, production flows, hedging stock policies, inventory management, supply chain dynamics, discrete-event simulations.

Learning Prerequisites

Recommended courses

MATH 234 Probabilities and Statistics, or similar.

Learning Outcomes

By the end of the course, the student must be able to:

- Identify and characterize the relevant parameters that are influencing material flows in production lines.
- Synthesize the influence of buffers on the performance of transfer lines.
- Compute optimal hedging stock policies.
- Model the general dynamics of simple supply chains, and discuss linear stability issues.
- Examine the behaviour of manufacturing systems and supply chains using a discrete-event simulator.

Assessment methods

Final written exam (80% of the grade), project work during the semester (20% of the grade).

Resources

Ressources en bibliothèque

- Manufacturing Systems Engineering / Gershwin
- Factory Physics / Hopp
- •

Notes/Handbook

Manuscript and slides available in English. Books:

- Manufacturing Systems Engineering by Stanley B. Gershwin
- Factory Physics by W. J. Hopp and M. L. Spearman
- Stochastic Models of Manufacturing Systems by J. A. Buzacott and J. G. Shanthikumar