

MICRO-428	Metrology				
	Bruschini Claudio, Charbon Edoardo, Fantner Georg, Vardi Ilan				
Cursus		Sem.	Туре	Language of	English
Microtechnics	ľ	MA2, MA4	Obl.	teaching	LIIGIISII
				Credits	3
				Withdrawal	Unauthorized
				Session	Summer
				Semester	Spring
				Exam	Oral
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	3 weekly
				Number of	
				positions	
				It is not allowed to withdraw from this subject after the registration deadline.	

Summary

Course introduces the concept of measurement in electrical, optical, and microscale domains, dealing with accuracy, and resolution. Weâ##ll introduce techniques to handle intrinsic and extrinsic limitations of the measurement in these domains. Course ends with a quantum perspective.

Content

The topics covered by the course are summarized as follows:

• Deconstruction class (W 1.1)

Classical metrology, current definitions (kg, C, A, V), Système International (W 1.2) HW Series 1 (W 1.3)

• Basic statistics: random variables, random processes, probability distribution functions, moments, statistical independence, correlation, wide-sense stationary processes, ergodicity, Gaussian and Poisson processes, Central Limit Theorem, time series analysis, elements of estimation theory. Concepts of accuracy, precision, and resolution of a measurement

(W 2 – W 3)

HW Series 2, 3 (W 2.3, W 3.3)

• Electrical metrology: currents, voltages, charges, noise sources (1/f, RTS, shot, thermal, KT/C), averaging techniques, accuracy, precision, error estimation, time estimation. Tools for electrical metrology (lock-in, PLL, DLL, network analyser, etc.).

(W 4 - W 5 - W 6.1) HW Series 4, 5 (W 4.3, W 5.3) • Time

(W 6.2 – W 7.1)

HW Series 6 (W 6.3)

• Optical metrology: photons & wavelengths, intensity, photon flux, image sensor parameters (optical gain, quantum efficiency, PRNU, etc.). Tools for optical metrology. Optical system evaluation (aberration, concentration factors, refraction, diffraction, vignetting, Abbe's limit).

(W 7.2-W 8-W 9)

HW Series 7, 8, 9 (W 7.3, W 8.3, W 9.3)

• Microscale metrology: SPM/AFM, SEM, interferometry, measurement of micro/nanoscale forces and distances, nanomechanical properties, fundamental issues of nanomechanical metrology instruments.

(W 10 – W 11)

HW Series 10, 11 (W 10.3, W 11.3)

• Redefinition of SI, METAS.

(W 12)

• Quantum perspective: the f-U-I triangle, measuring randomness, photon counting, single-electron detection, qubit metrology, micro-temperature measurements and cryogenic limits.

(W 13 - W 14)

HW Series 12, 13 (W 13.3, W 14.3)

Keywords

Accuracy, precision, resolution, reproducibility, reliability, fidelity of the measurement

Learning Prerequisites Required courses Basic mathematics/physics

Recommended courses Design of experiments

Learning Outcomes

By the end of the course, the student must be able to:

- Develop measurement setups that yield reproducible results
- Analyze the accuracy and precision of a measurement for a certain resolution
- Interpret the quality of data from measurements

Assessment methods

Self-assessment (ungraded homework, exercise session presence verified); final exam during exam sessions.

Resources Notes/Handbook Specialized labs, references TBD.