

MICRO-413 Advanced additive manufacturing technologies

Briand Danick, Brugger Jürgen, Moser Christophe

Bhand Baniok, Bragger Bargert, Meder Enholophe			
Cursus	Sem.	Туре	
Mechanical engineering	MA2, MA4	Opt.	
Microtechnics	MA2, MA4	Opt.	
Mineur STAS Chine	E	Opt.	

Language of	English		
teaching			
Credits	3		
Withdrawal	Unauthorized		
Session	Summer		
Semester	Spring		
Exam	Oral		
Workload	90h		
Weeks	14		
Hours	3 weekly		
Courses	2 weekly		
Exercises	1 weekly		
Number of	40		
positions			
It is not allowed to with draw			

It is not allowed to withdraw from this subject after the registration deadline.

Summary

Advanced 3D forming techniques for high throughput and high resolution (nanometric) for large scale production. Digital manufacturing of functional layers, microsystems and smart systems.

Content

High speed 3D printing with polymers (DMD based) Fabrication methods for 3D nanometric resolution Drop on demand digital printing Hybrid printing: 3D printing with embedded electronic functionalities

Keywords

Micro-nano 3D manufacturing Drop on demand printing Ink formulation High speed light management Hybrid printing

Learning Prerequisites

Required courses

- 40 students maximum (first come first serve if more than 40).
- required course: ME-413

Learning Outcomes

By the end of the course, the student must be able to:

- Select appropriately advanced printing methods for a given printing requirement
- Realize 3D printing concepts and their limitations
- Match different printing methods to realize multi-functional 3D structures
- Manipulate advanced 3D printing equipment

Assessment methods

Oral + TP

Resources

Notes/Handbook

Selected sections (PDF format) in books: Microdrop generator, Eric Lee, CRC press Surface tension in microsystems, Springer Additive Manufacturing Technologies, Ian Gibson, David Rosen, Brent Stucker, Springer Selected papers and course slides.