MATH-343 Mathematical mechanical biology

Lessinnes Thomas Olivier D.				
Cursus	Sem.	Туре	Language of	English
Mathematics	BA5	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 5 Winter Fall Oral 150h 14 4 weekly 2 weekly 2 weekly

Summary

The course will be split into three parts which will respectively cover bio-filaments, bio-membranes and morphoelasticity.

Content

- -- statistical mechanics of different chains of growing complexity.
- -- classical rod mechanics (Kirchhoff and Cosserat).
- -- Geometry of surfaces and its application to mechanics.
- -- Fluid bio-membranes.
- -- Axisymmetric Membranes and Shells in linear and nonlinear elasticity.
- -- Growth of rods.
- -- A brief introduction to classical nonlinear elasticity.
- -- Volumetric growth.

Keywords

nonlinear elasticity growing bodies bio-filaments bio-membranes

Learning Prerequisites

Required courses Analysis I-III Physics I

Recommended courses Physics II

Learning Outcomes

By the end of the course, the student must be able to:

- Develop models of different systems in the framework of continuum mechanics.
- Solve typical problems related to mechanics and growth.
- Propose well motivated approximations.

Expected student activities

Besides attending the lecture and exercice sessions (which are both recommended albeit not compulsory), the curious students will be strongly encouraged to also do some home reading.

Assessment methods

oral exam

"Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés."

Supervision

Office hours No Assistants Yes Forum No

Resources

Virtual desktop infrastructure (VDI) No

Websites

• http://mathgeomsrv2.epfl.ch/teaching/MathematicalMechanicalBiology/