EPFL

2 weekly

Exercises

Number of positions

De Los Rios Paolo				
Cursus	Sem.	Туре	Language of	English
Bioengineering	MA1, MA3	Opt.	Opt. teaching Opt. Credits Opt. Session Opt. Semester Opt. Exam Opt. Workload	English
Ingphys	MA1, MA3	Opt.		4 Winter Fall Oral 120h
Life Sciences Engineering	MA1, MA3	Opt.		
Physicien	MA1, MA3	Opt.		
Sciences du vivant	MA1, MA3	Opt.		
			Weeks Hours Courses	14 4 weekly 2 weekly

Summary

Introduction to the application of the notions and methods of theoretical physics to problems in biology.

Content

1. Introduction to polymer theory: on and off-lattice polymers; statistical properties; exact, numerical and approximate results; correlation length; self-avoidance.

2. Interacting polymers: experiments and models; analytical and

numerical solutions of the models; phase diagram.

3. Proteins: their role in biology; basic components; experimental results; models; analytical and numerical results.

Learning Prerequisites

Recommended courses Course of Statistical Physics

Learning Outcomes

By the end of the course, the student must be able to:

• Solve problems in polymers statistical physics

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra. Exercises in class

Assessment methods

oral