

PHYS-452 Radiation detection

Lamilana vincent		
Cursus	Sem.	Type
Ingphys	MA1, MA3	Opt.
Nuclear engineering	MA1	Opt.
Physicien	MA1, MA3	Opt.

Lamirand Vincent

Language of teaching	English
Credits	3
Session	Winter
Semester	Fall
Exam	Oral
Workload	90h
Weeks	14
Hours	3 weekly
Courses	2 weekly
Exercises	1 weekly
Number of positions	

Summary

The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well as detectors, instrumentations and measurements methods commonly used in the nuclear field.

Content

- Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeV range, ionisation, nuclear cross sections.
- Characteristics and types of detectors: gas detectors, semiconductor detectors, scintillators and optical fibers, fission chambers, meshed and pixel detectors
- **Signal processing and analysis:** types of electronics, signal collection and amplification, particle discrimination, spatial and time resolution
- **Nuclear instrumentation and measurements:** principle of measurements, spectrometry, common detection instrumentations, applications in nuclear engineering and R&D.

Keywords

radiation detection; radiation-matter interaction; ionizing radiation; detector; signal processing; nuclear instrumentation; measurement methods

Learning Outcomes

By the end of the course, the student must be able to:

- Explain interaction processes of ionising radiation and matter
- Describe the production of a detection signal and its processing
- Explain the operation of all types of commonly used detectors
- Assess / Evaluate the detection system and method required for a specific measurement

Transversal skills

· Communicate effectively with professionals from other disciplines.

Teaching methods

Lectures, exercises, presentations, practice.

Radiation detection Page 1 / 2

Expected student activities

Attendance at lectures and exercises, short presentations.

Assessment methods

Oral exam

Supervision

Assistants Yes

Resources

Bibliography

Radiation detection and measurement, Glenn F. Knoll. Wiley 2010 Practical Gamma-Ray Spectrometry, Gordon R. Gilmore, Wiley & Sons 2008

Ressources en bibliothèque

- Radiation detection and measurement, Glenn F. Knoll
- Practical Gamma-Ray Spectrometry, Gordon R. Gilmore

Radiation detection Page 2 / 2