CH-242(b)	Statistical thermodynamics	
	Hadfeldt Anders	_

Hagieldt Anders				
Cursus	Sem.	Туре	Language of	English
Chemistry and chemical engineering	BA4	Obl.	teaching	Linglish
HES - CGC	E	Obl.	Credits Session	3 Summer
			Semester Exam Workload Weeks Hours Courses	Spring Written 90h 14 3 weekly 2 weekly
			Exercises Number of	1 weekly

Summary

This course enables the acquisition of basic concepts in statistical thermodynamics including the Boltzmann distribution law, partition functions, ensembles, calculations of thermodynamic properties, Bose-Einstein and Fermi-Dirac statistics, metals, semiconductors, p-n junctions and photovoltaics.

Content

1. The Boltzmann distribution law

Derivation, Approximation

2. Partition function

The translational, rotational, vibrational and electronic partition functions

3. Thermodynamic functions from statistical thermodynamics

U, CV, heat and work, Entropy, Helmholtz' and Gibbs' free energies, Chemical potential

4. Ensembles

The canonical ensemble, the canonical partition function, the equilibrium constant

5. Quantum statistics

Bose-Einstein statistics, Fermi-Dirac statistics, the grand canonical partition function

6. Applying partition functions and ensembles

Heat capacity of solids, Computational chemical methods

7. The solid state

Electronic energy levels and density of states in metals, Fermi level

8. Semiconductors

Energy levels, density of states, intrinsic semiconductors, n- and p-doping

9. p-n junctions

Equilibrium. applied bias, diode equation, photovoltaics

Keywords

Boltzmann distribution Partition function Ensembles Quantum statistics Semiconductors

positions

p-n junction

Learning Prerequisites

Important concepts to start the course

Laws of thermodynamics

Equations for quantum energy levels of particle-in-a-box, rotation and vibtration.

Learning Outcomes

By the end of the course, the student must be able to:

- Contextualise the connection between quantum mechanics and thermodynamics
- Apply the molecular partition functions
- Derive the vibrational and translational partition function
- Derive and compute thermodynamic functions from partition functions
- Describe the different ensembles
- Apply Fermi-Dirac and Bose-Einstein statistics to solids
- Demonstrate the formation of a p-n junction
- Describe the principles of photovoltaics

Teaching methods

Lectures with hand outs. Exercises.

Assessment methods

Written exam

Supervision

Office hours	No
Assistants	Yes
Forum	No

Resources

Virtual desktop infrastructure (VDI) No

Bibliography Handouts of Lecture Notes and exercises

Reference books: Benjamin Widom, Statistical Mechanics: A Concise Introduction for Chemists, Cambridge University Press -2002, ISBN-13: 978-0521009669 Donald A. McQuarrie, Statistical Mechanics, University Science Books - 2000, ISBN - 1-891389-15-7.

For introduction and as a reference for classical thermodynamics

Pierre Infelta & Michael Grätzel, Thermodynamique: Principles et Applications. BrownWalker Press - 2006. ISBN - 1-58112-995-5.

Ressources en bibliothèque

• Thermodynamique / Infelta

• Statistical mechanics / McQuarrie