

# CS-307 Introduction to multiprocessor architecture

Jakob Wenzel

| Cursus                                | Sem.     | Type |
|---------------------------------------|----------|------|
| Communication systems                 | BA5      | Opt. |
| Computational science and Engineering | MA1, MA3 | Opt. |
| Computer science                      | BA5      | Obl. |

| Language of teaching | English    |
|----------------------|------------|
| Credits              | 3          |
| Session              | Winter     |
| Semester             | Fall       |
| Exam                 | During the |
|                      | semester   |
| Workload             | 90h        |
| Weeks                | 14         |
| Hours                | 3 weekly   |
| Courses              | 2 weekly   |
| Project              | 1 weekly   |
| Number of            |            |
| positions            |            |
|                      |            |

## **Summary**

Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce the essential technologies required to combine multiple processing elements into a single computer.

#### Content

- Forms of parallelism
- Parallel programming models
- Cache coherence
- Memory consistency
- Synchronization
- Interconnection networks
- Software efficiency & optimization
- GPU architecture & programming

## Keywords

Multiprocessors, multicores, manycores, cache coherence, memory consistency models, memory ordering, manycore cache hierarchies, interconnection networks, synchronization, parallelism, GPU

#### **Learning Prerequisites**

#### Required courses

CS-206 Parallelism and concurrency

CS-208 Computer architecture / Architecture des ordinateurs

### Important concepts to start the course

Introductory understanding of computer architecture & organization Basic C/C++ systems programming

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Detect and address inefficiencies in parallel software
- Design and evaluate software for multiple parallel platforms
- Design and evaluate hardware for shared memory



- Compare and contrast hardware design choices in parallel platforms
- Demonstrate and describe the operation of snooping and directory coherence protocols

# **Teaching methods**

Lectures, homework and project

#### **Assessment methods**

mid-term and final

# Supervision

Office hours Yes Assistants Yes

### Resources

### Websites

• http://parsa.epfl.ch/courses/cs307/