# CS-523 Advanced topics on privacy enhancing technologies

|                  | Troncoso Carmela, Hubaux Jean-Pierre |      |
|------------------|--------------------------------------|------|
| Cursus           | Sem.                                 | Type |
| Computer science | MA2, MA4                             | Opt. |
| Cybersecurity    | MA2, MA4                             | Opt. |
| Data Science     | MA2, MA4                             | Opt. |
| SC master EPFL   | MA2, MA4                             | Opt. |
|                  |                                      |      |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 7        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Written  |
| Workload             | 210h     |
| Weeks                | 14       |
| Hours                | 6 weekly |
| Courses              | 3 weekly |
| Exercises            | 1 weekly |
| Project              | 2 weekly |
| Number of            |          |
| positions            |          |

### **Summary**

This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to protect privacy, and how to evaluate the protection they provide.

#### Content

The course will delve into the following topics:

Privacy definitions and concepts, and the socioeconomic context of privacy: economics and incentives, ethics, regulation.

•

Cryptographic privacy solutions: Identity management and anonymous credentials, zero-knowledge proofs, secure multi-party computation, homomorphic encryption, garbled circuits, Private information retrieval (PIR), Oblivious RAM (ORAM)

.

Anonymization and data hiding: generalization, differential privacy, etc

•

Machine learning and privacy: how machine learning can be use to infer private information; and how much information can be learned from machine learning models.

•

Protection of metadata: anonymous communications systems, location privacy, censorpship resistance.

Online tracking.

•

Evaluation of privacy-preserving systems - notions, definitions, quantification / computation

#### **Keywords**

Privacy, anonymity, homomorphic encryption, secure multi-paty computation, anonymous credentials, ethics

#### **Learning Prerequisites**

Required courses

COM-402 Information Security and Privacy

COM-301 Computer Security



### Recommended courses

COM-401 Cryptography

### Important concepts to start the course

Basic programming skills; basics of probabilities and statistics; basics of cryptography

# **Learning Outcomes**

By the end of the course, the student must be able to:

- Select appropriately privacy mechanisms
- Develop privacy technologies
- Assess / Evaluate privacy protection
- Reason about privacy concerns

# **Teaching methods**

Lectures

### **Expected student activities**

Participate to lectures
Do the exercises
Successfully prepare to the exam

### **Assessment methods**

Final exam

### Supervision

Assistants Yes

## Resources

# **Bibliography**

Will be provided at the first lecture