

positions

CS-526	Learning theory				
	Macris Nicolas, Urbanke Rüdiger				
Cursus	Se	em.	Туре	Language of	English
Computer science	M	A2, MA4	Opt.	teaching	Linglish
Cybersecurity	M	A2, MA4	Opt.	Credits	4
Data Science	M	A2, MA4	Opt.		Session Summer Semester Spring Exam Written
SC master EPFL	M	A2, MA4	Opt.		
		,		Workload	120h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of	,

Summary

Machine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.

Content

- Basics : statistical learning framework, Probably Approximately Correct (PAC) learning, learning with a finite number of classes, Vapnik-Chervonenkis (VC) dimension, non-uniform learnability, complexity of learing.
- Neural Nets : representation power of neural nets, learning and stability, PAC Bayes bounds.
- · Graphical model learning.
- Non-negative matrix factorization, Tensor decompositions and factorization.
- Learning mixture models.

Learning Prerequisites

Recommended courses

- Analysis I, II, III
- Linear Algebra
- Machine learning
- Probability
- Algorithms (CS-250)

Learning Outcomes

By the end of the course, the student must be able to:

- Explain the framework of PAC learning
- Explain the importance basic concepts such as VC dimension and non-uniform learnability
- Describe basic facts about representation of functions by neural networks

• Describe recent results on specific topics e.g., graphical model learning, matrix and tensor factorization, learning mixture models

Teaching methods

- Lectures
- Exercises

Expected student activities

- Attend lectures
- Attend exercises sessions and do the homework

Assessment methods

Final exam and graded homeworks

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes
Others	Course website