

MSE-477	Nanomaterials				
	Tileli Vasiliki				
Cursus		Sem.	Type	Language of	English
Chimiste		MA2, MA4	Opt.	teaching	Liigiisii
Life Sciences Engineering		MA2, MA4	Opt.	Credits Session Semester Exam	3 Summer Spring During the semester
Materials Science and Engineering		MA2, MA4	Opt.		
Neuroprosthetics minor		E	Opt.		
				Workload	90h
				Weeks	14
				Hours	3 weekly
				Courses	2 weekly
				Exercises	1 weekly
				Number of positions	

Summary

This course is an introduction to the concepts and associated relevant physics and materials science principles of what makes nanomaterials outperform their bulk counterparts. It will cover their synthesis and characterization as well as the physical and chemical properties at the nanoscale.

Content

- 1. Emergence, definitions, challenges
- 2. Sythesis & characterization
- 3. Nano thermodynamic/thermal/mechanical properties
- 4. Nanoelectronics, nanooptics, and nanomagnetism
- 5. Carbon-basd nanomaterials and further advances
- 6. Nano for energy and nano for environment
- 7. Nanomedicine, nanotoxicology, and safety issues in nano

Keywords

nanomaterials, nanoscale

Learning Prerequisites

Required courses

Intoduction to Materials Science

Recommended courses

Crystallography Inorganic chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Contextualise physical properties of nanomaterials
- Choose synthesis and characterization method
- Choose the nanomaterial for a specific application

Assessment methods

Nanomaterials Page 1 / 2

- 1. Grouped project with presentation
- 2. Individual written esssay
- 3. Final exam

Resources

Bibliography

- 1. Fundamentals of Nanotechnology, G.L. Hornyak, J.J. Moore, H.F. Tobbals & J. Dutta, CRC press, 2009
- 2. Nanostructures and Nanomaterials –Synthesis, Properties and Applications, C. Guozhong & W. Ying, World Scientific Publishing, 2nd edition, 2011

Ressources en bibliothèque

- Fundamentals of Nanotechnology / Hornyak
- Nanostructures and Nanomaterials Synthesis, Properties and Applications / Guozhong

Nanomaterials Page 2 / 2