PHYS-455 Introduction to medical radiation physics

Bochud François, Verdun Francis				
Cursus	Sem.	Туре	Language of	English
Nuclear engineering	MA1	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	4 Winter Fall Oral 120h 14 3 weekly 2 weekly 1 weekly

Summary

This course covers the physical principles underlying medical diagnostic imaging (radiography, fluoroscopy, CT, SPECT, PET, MRI), radiation therapy and radiopharmacy. The focus is not only on risk and dose to the patient and staff, but also on an objective description of the image quality.

Content

Physics of radiography x-ray device, x-ray spectra, main image receptors

Image quality main challenge, signal theory, decision theory

Physics of radiation therapy epidemiological data about cancer, general workflow, beam production and characterization, dose calculation, dose distribution, high-level treatment techniques

Risk and radiation

effects, acute and chronic risks,

psychological aspects, communication about radiation risk

Radiopharmaceutical products types of radiopharmaceuticals in nuclear medicine, lab infrastructure, labeling approaches, thin layer chromatography

Physics of radioscopy radiography and fluoroscopy units, challenges of radiation protection, dose indicators **Physics of computer tomography (CT)** principle of CT image acquisition, image quality, DECT

Physics of resonance magnetic imaging (MRI) MRI acquisition, proton density, localization of the signal Physics of single-photon emission computed tomography (SPECT) gamma camera imaging, resolution and sensitivity, quantitative imaging

Physics of positron emission tomography (PET) coincidence detection, time-of-flight systems, resolution and sensitivity, quantitative imaging

Dose to the patient general method, dose estimation in radiodiagnostic, dose estimation in internal contamination **Receiver operating characteristics (ROC)** meaning of a ROC curve, detection experiment, performance communication

Model observers in medical imaging and human vision objective image quality, ideal and anthropomorphic observers, visual pathway, perception of a signal

Keywords

medical imaging, medical radiation

Learning Prerequisites

Recommended courses

This course has many synergies with the Radiation biology, protection and applications course where the basics of radiation physics and some aspects of radiation protection are very useful to follow the present course.

Teaching methods

Ex-cathedra with integrated individual exercises

Assessment methods

oral exam

Resources

Bibliography Course in general • William R. Hendee and E. Russell Ritenour, "Medical Imaging Physics", Wiley-Liss, 4th edition, 2002

• The Essential Physics of Medical Imaging, Third Edition, Jerrold T. Bushberg

Références suggérées par la bibliothèque

- The Essential Physics of Medical Imaging, Third Edition, Jerrold T. Bushberg
- William R. Hendee and E. Russell Ritenour, "Medical Imaging Physics"