

Advanced topics in nuclear reactor materials

Pouchon Manuel A., Spaetig Philippe, Streit Marco

Cursus	Sem.	Туре	Language of	English
Nuclear engineering	MA3	Opt.	teaching	Ligion
		-	Credits	4
			Session	Winter
			Semester	Fall
			Exam	During the semester
			Workload	120h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly
			Number of positions	

Remark

ETH-530

Cours donné par EPFL à PSI-Villigen

Summary

To comprehend advanced aspects of materials science as applied to nuclear power (fission and fusion), to get acquainted with materials for advanced plants, advanced damage characterization and life-time assessments

Content

- Materials for advanced nuclear plants
- Fuel behaviour under high burnup conditions
- Fuel behaviour under hypothetical accident conditions (RIA, LOCA)
- Important materials parameters
- Response of materials to high temperatures / high irradiation levels
- Advanced analytical tools for damage assessment
- Modeling of materials behaviour
- Working with highly radioactive materials
- Discussion of results from current research projects

Learning Prerequisites

Recommended courses Nuclear fuels & materials

Learning Outcomes

By the end of the course, the student must be able to:

- Systematize Fuel behaviour under high burnup conditions
- Specify the role of material parameters in plant integrity assessment
- Formulate material behaviour under high temperature/high irradiation level

Transversal skills

- Make an oral presentation.
- Summarize an article or a technical report.

• Access and evaluate appropriate sources of information.

Teaching methods Course takes place at PSI